Refine Your Search

Topic

Search Results

Technical Paper

A Computational and Experimental Investigation into the Effects of Debris on an Inverted Double Wing in Ground Effect

2018-04-03
2018-01-0726
Cars in several motor sports series, such as Formula 1, make use of multi-element front wings to provide downforce. These wings also provide onset flows to other surfaces that generate downforce. These elements are highly loaded to maximise their performance and are generally operating close to stall. Rubber debris, often known as marbles, created from the high slip experienced by the soft compound tyres can become lodged in the multiple elements of a front wing. This will lead to a reduction in the effectiveness of the wing over the course of a race. This work will study the effect of such debris, both experimentally and numerically, on an inverted double element wing in ground effect at representative Reynolds numbers. The wing was mounted at two different ride heights above a fixed false-floor in the Loughborough University wind tunnel and the effect of debris blockage modelled by closing sections of the gap between elements with tape.
Technical Paper

A Fuel Cell System Sizing Tool Based on Current Production Aircraft

2017-09-19
2017-01-2135
Electrification of aircraft is on track to be a future key design principal due to the increasing pressure on the aviation industry to significantly reduce harmful emissions by 2050 and the increased use of electrical equipment. This has led to an increased focus on the research and development of alternative power sources for aircraft, including fuel cells. These alternative power sources could either be used to provide propulsive power or as an Auxiliary Power Unit (APU). Previous studies have considered isolated design cases where a fuel cell system was tailored for their specific application. To accommodate for the large variation between aircraft, this study covers the design of an empirical model, which will be used to size a fuel cell system for any given aircraft based on basic design parameters. The model was constructed utilising aircraft categorisation, fuel cell sizing and balance of plant sub-models.
Journal Article

A Fully Coupled, 6 Degree-of-Freedom, Aerodynamic and Vehicle Handling Crosswind Simulation using the DrivAer Model

2016-04-05
2016-01-1601
In a real-world environment, a vehicle on the road is subjected to a range of flow yaw angles, the most severe of which can impact handling and stability. A fully coupled, six degrees-of-freedom CFD and vehicle handling simulation has modelled the complete closed loop system. Varying flow yaw angles are introduced via time dependent boundary conditions and aerodynamic loads predicted, whilst a handling model running simultaneously calculates the resulting vehicle response. Updates to the vehicle position and orientation within the CFD simulation are achieved using the overset grid method. Using this approach, a crosswind simulation that follows the parameters of ISO 12021:2010 (Sensitivity to lateral wind - Open-loop test method using wind generator input), was performed using the fastback variant of the DrivAer model. Fully coupled aerodynamic and vehicle response was compared to that obtained using the simplified quasi-steady and unsteady, one way coupled method.
Technical Paper

A Parallel Hybrid Drive System for Small Vehicles: Architecture and Control Systems

2016-04-05
2016-01-1170
The TC48 project is developing a state-of-the-art, exceptionally low cost, 48V Plug-in hybrid electric (PHEV) demonstration drivetrain suitable for electrically powered urban driving, hybrid operation, and internal combustion engine powered high speed motoring. This paper explains the motivation for the project, and presents the layout options considered and the rationale by which these were reduced. The vehicle simulation model used to evaluate the layout options is described and discussed. The modelling work was used in order to support and justify the design choices made. The design of the vehicle's control systems is discussed, presenting simulation results. The physical embodiment of the design is not reported in this paper. The paper describes analysis of small vehicles in the marketplace, including aspects of range and cost, leading to the justification for the specification of the TC48 system.
Technical Paper

Aerodynamic Drag of a Compact SUV as Measured On-Road and in the Wind Tunnel

2002-03-04
2002-01-0529
Growing concerns about the environmental impact of road vehicles will lead to a reduction in the aerodynamic drag for all passenger cars. This includes Sport Utility Vehicles (SUVs) and light trucks which have relatively high drag coefficients and large frontal area. The wind tunnel remains the tool of choice for the vehicle aerodynamicist, but it is important that the benefits obtained in the wind tunnel reflect improvements to the vehicle on the road. Coastdown measurements obtained using a Land Rover Freelander, in various configurations, have been made to determine aerodynamic drag and these have been compared with wind tunnel data for the same vehicle. Repeatability of the coastdown data, the effects of drag variation near to zero yaw and asymmetry in the drag-yaw data on the results from coastdown testing are assessed. Alternative blockage corrections for the wind tunnel measurements are examined.
Technical Paper

An Input Linearized Powertrain Model for the Optimal Control of Hybrid Electric Vehicles

2022-03-29
2022-01-0741
Models of hybrid powertrains are used to establish the best combination of conventional engine power and electric motor power for the current driving situation. The model is characteristic for having two control inputs and one output constraint: the total torque should be equal to the torque requested by the driver. To eliminate the constraint, several alternative formulations are used, considering engine power or motor power or even the ratio between them as a single control input. From this input and the constraint, both power levels can be deduced. There are different popular choices for this one control input. This paper presents a novel model based on an input linearizing transformation. It is demonstrably superior to alternative model forms, in that the core dynamics of the model (battery state of energy) are linear, and the non-linearities of the model are pushed into the inputs and outputs in a Wiener/Hammerstein form.
Technical Paper

Comparison of Neural Network Topologies for Sensor Virtualisation in BEV Thermal Management

2024-04-09
2024-01-2005
Energy management of battery electric vehicle (BEV) is a very important and complex multi-system optimisation problem. The thermal energy management of a BEV plays a crucial role in consistent efficiency and performance of vehicle in all weather conditions. But in order to manage the thermal management, it requires a significant number of temperature sensors throughout the car including high voltage batteries, thus increasing the cost, complexity and weight of the car. Virtual sensors can replace physical sensors with a data-driven, physical relation-driven or machine learning-based prediction approach. This paper presents a framework for the development of a neural network virtual sensor using a thermal system hardware-in-the-loop test rig as the target system. The various neural network topologies, including RNN, LSTM, GRU, and CNN, are evaluated to determine the most effective approach.
Technical Paper

Electric Vehicle Smart Charging Considering Fluctuating Electrical Grid Pricing and Extreme Weather

2023-04-11
2023-01-0709
As lithium-ion electric vehicle (EV) batteries are sensitive to the conditions they are exposed to during charging and discharging, operational control has been an important research area. While an understanding of the effects current load and operation temperature has on the ageing stability of a battery has been established, associated control strategies are yet to be fully optimized. Most battery charging studies utilize controlled ambient temperatures and basic defined cycles, which may only apply to a small subset of real-world EV consumers. This leads to control strategies that do not consider electrical grid price fluctuation, user driving habits or local weather conditions. This paper looks to propose improved smart charging strategies of EVs to reduce consumer costs while also increasing the battery longevity. To accomplish the primary objective, A model has been generated that simulates the standard charge cycle of a battery.
Journal Article

Experimental Analysis of Spray Topology in the Wake of an Automotive Body

2023-04-11
2023-01-0793
Advanced driver assistance systems rely on external sensors that encompass the vehicle. The reliability of such systems can be compromised by adverse weather, with performance hindered by both direct impingement on sensors and spray suspended between the vehicle and potential obstacles. The transportation of road spray is known to be an unsteady phenomenon, driven by the turbulent structures that characterise automotive flow fields. Further understanding of this unsteadiness is a key aspect in the development of robust sensor implementations. This paper outlines an experimental method used to analyse the spray ejected by an automotive body, presented through a study of a simplified vehicle model with interchangeable rear-end geometries. Particles are illuminated by laser light sheets as they pass through measurement planes downstream of the vehicle, facilitating imaging of the instantaneous structure of the spray.
Technical Paper

GPS Based Energy Management Control for Plug-in Hybrid Vehicles

2015-04-14
2015-01-1226
In 2012 MAHLE Powertrain developed a range-extended electric vehicle (REEV) demonstrator, based on a series hybrid configuration, and uses a battery to store electrical energy from the grid. Once the battery state of charge (SOC) is depleted a gasoline engine (range extender) is activated to provide the energy required to propel the vehicle. As part of the continuing development of this vehicle, MAHLE Powertrain has developed control software which can intelligently manage the use of the battery energy through the combined use of GPS and road topographical data. Advanced knowledge of the route prior to the start of a journey enables the software to calculate the SOC throughout the journey and pre-determine the optimum operating strategy for the range extender to enable best charging efficiency and minimize NVH. The software can also operate without a pre-determined route being selected.
Technical Paper

Genetic Learning Automata and Fuzzy Controller Applied to Active Suspension

2003-03-03
2003-01-0133
An application in the automotive filed for the Genetic Learning Automata Fuzzy Classifier System is presented in this work. As a non-linear model free-based strategy, the major advantages of this approach are its modularity and its extensibility. A controller designed using this method for a quarter-car model is applied to a 6-DOF model giving a reasonable performance. Comparisons with the LQR controller are also carried out.
Technical Paper

Holistic Thermal Energy Modelling for Full Hybrid Electric Vehicles (HEVs)

2020-04-14
2020-01-0151
Full hybrid electric vehicles are usually defined by their capability to drive in a fully electric mode, offering the advantage that they do not produce any emissions at the point of use. This is particularly important in built up areas, where localized emissions in the form of NOx and particulate matter may worsen health issues such as respiratory disease. However, high degrees of electrification also mean that waste heat from the internal combustion engine is often not available for heating the cabin and for maintaining the temperature of the powertrain and emissions control system. If not managed properly, this can result in increased fuel consumption, exhaust emissions, and reduced electric-only range at moderately high or low ambient temperatures negating many of the benefits of the electrification. This paper describes the development of a holistic, modular vehicle model designed for development of an integrated thermal energy management strategy.
Technical Paper

Human Factors Issues in the Application of a Novel Process Description Environment for Machine Design and Control Developed under the Foresight Vehicle Programme

2002-03-04
2002-01-0466
In the globalization of the automotive businesses, manufacturing companies and their suppliers are forced to distribute the various lifecycle phases in different geographical locations. Misunderstandings arising from the variety of personnel involved, each with different requirements, backgrounds, roles, cultures and skills for example can result in increased cost and development time. To enable collaborating companies to have a common platform for interaction, the COMPANION project at Loughborough University has been undertaken to develop a common model-based environment for manufacturing automotive engines. Through the use of this environment, the stakeholders will be able to “visualize” consistently the evolution of automated systems at every lifecycle stage i.e. requirements definition, specification, design, analysis, build, evaluation, maintenance, diagnostics and recycle.
Technical Paper

Improved Thermoelectric Generator Performance Using High Temperature Thermoelectric Materials

2017-03-28
2017-01-0121
Thermoelectric generator (TEG) has received more and more attention in its application in the harvesting of waste thermal energy in automotive engines. Even though the commercial Bismuth Telluride thermoelectric material only have 5% efficiency and 250°C hot side temperature limit, it is possible to generate peak 1kW electrical energy from a heavy-duty engine. If being equipped with 500W TEG, a passenger car has potential to save more than 2% fuel consumption and hence CO2 emission reduction. TEG has advantages of compact and motionless parts over other thermal harvest technologies such as Organic Rankine Cycle (ORC) and Turbo-Compound (TC). Intense research works are being carried on improving the thermal efficiency of the thermoelectric materials and increasing the hot side temperature limit. Future thermoelectric modules are expected to have 10% to 20% efficiency and over 500°C hot side temperature limit.
Technical Paper

MIMO (Multiple-Input-Multiple-Output) Control for Optimising the Future Gasoline Powertrain - A Survey

2017-03-28
2017-01-0600
This paper surveys publications on automotive powertrain control, relating to modern GTDI (Gasoline Turbocharged Direct Injection) engines. The requirements for gasoline engines are optimising the airpath but future legislation suggests not only a finely controlled airpath but also some level of electrification. Fundamentals of controls modelling are revisited and advancements are highlighted. In particular, a modern GTDI airpath is presented based on basic building blocks (volumes, turbocharger, throttle, valves and variable cam timing or VCT) with an example of a system interaction, based on boost pressure and lambda control. Further, an advanced airpath could be considered with applications to downsizing and fuel economy. A further electrification step is reviewed which involves interactions with the airpath and requires a robust energy management strategy. Examples are taken of energy recovery and e-machine placement.
Technical Paper

Managing Loads on Aircraft Generators to Prevent Overheat In-Flight

2014-09-16
2014-01-2195
On future UAVs it is envisaged that the power requirements of all on-board electrical systems will increase. In most flight (mission) situations the installed power generation will have adequate capacity to operate the aircraft. It is possible that during abnormal situations such as coolant blockage the generators on-board may be forced to operate under very high load conditions. The main failure mechanism for a generator is overheating and subsequent disintegration of windings, hence the research problem being addressed here is to manage the loads upon the generator to prevent overheats. The research presented here summarizes the modeling of the generator and formation of the load management system. Results are presented showing the system reallocating loads after a fault during flight, preventing overheat of the generators and successfully completing the mission.
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Journal Article

Modeling Transient Control of a Turbogenerator on a Drive Cycle

2022-03-29
2022-01-0415
GTDI engines are becoming more efficient, whether individually or part of a HEV (Hybrid Electric Vehicle) powertrain. For the latter, this efficiency manifests itself as increase in zero emissions vehicle mileage. An ideal device for energy recovery is a turbogenerator (TG), and, when placed downstream the conventional turbine, it has minimal impact on catalyst light-off and can be used as a bolt-on aftermarket device. A Ricardo WAVE model of a representative GTDI engine was adapted to include a TG (Turbogenerator) and TBV (Turbine Bypass Valve) with the TG in a mechanical turbocompounding configuration, calibrated using steady state mapping data. This was integrated into a co-simulation environment with a SISO (Single-Input, Single-Output) dynamic controller developed in SIMULINK for the actuator control (with BMEP, manifold air pressure and TG pressure ratio as the controlled variables).
Technical Paper

On the Optimisation of Road Vehicle Leading Edge Radius in Varying Levels of Freestream Turbulence

2006-04-03
2006-01-1029
It has been recognised that the ideal flow conditions that exist in the modern automotive wind tunnel do not accurately simulate the environment experienced by vehicles on the road. This paper investigates the effect of varying one flow parameter, freestream turbulence, and a single shape parameter, leading edge radius, on aerodynamic drag. The tests were carried out at model scale in the Loughborough University Wind Tunnel, using a very simple 2-box shape, and in the MIRA Full Scale Wind Tunnel using the MIRA squareback Reference Car. Turbulence intensities up to 5% were generated by grids and had a strong effect on transcritical Reynolds number and Reynolds sensitivity at both model scale and full scale. There was a good correlation between the results in both tunnels.
Technical Paper

Optimal Control Inputs for Fuel Economy and Emissions of a Series Hybrid Electric Vehicle

2015-04-14
2015-01-1221
Hybrid electric vehicles offer significant fuel economy benefits, because battery and fuel can be used as complementing energy sources. This paper presents the use of dynamic programming to find the optimal blend of power sources, leading to the lowest fuel consumption and the lowest level of harmful emissions. It is found that the optimal engine behavior differs substantially to an on-line adaptive control system previously designed for the Lotus Evora 414E. When analyzing the trade-off between emission and fuel consumption, CO and HC emissions show a traditional Pareto curve, whereas NOx emissions show a near linear relationship with a high penalty. These global optimization results are not directly applicable for online control, but they can guide the design of a more efficient hybrid control system.
X