Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Bifurcation Analysis of an Open Loop Internal Combustion Engine

2019-04-02
2019-01-0194
The process of engine mapping in the automotive industry identifies steady-state engine responses by running an engine at a given operating point (speed and load) until its output has settled. While the time simulating this process with a computational model for one set of parameters is relatively short, the cumulative time to map all possible combinations becomes computationally inefficient. This work presents an alternative method for mapping out the steady-state response of an engine in simulation by applying bifurcation theory. The bifurcation approach used in this work allows the engine’s steady-state response to be traced through the model’s state-parameter space under the simultaneous variation of one or more model parameters. To demonstrate this approach, a bifurcation analysis of a simplified nonlinear engine model is presented.
Technical Paper

Analysis of SI Combustion Diagnostics Methods Using Ion-Current Sensing Techniques

2006-04-03
2006-01-1345
Closed-loop electronic control is a proven and efficient way to optimize spark ignition engine performance and to control pollutant emissions. In-cylinder pressure sensors provide accurate information on the quality of combustion. The conductivity of combustion flames can alternatively be used as a measure of combustion quality through ion-current measurements. In this paper, combustion diagnostics through ion-current sensing are studied. A single cylinder research engine was used to investigate the effects of misfire, ignition timing, air to fuel ratio, compression ratio, speed and load on the ion-current signal. The ion-current signal was obtained via one, or both, of two additional, remote in-cylinder ion sensors (rather than by via the firing spark plug, as is usually the case). The ion-current signals obtained from a single remote sensor, and then the two remote sensors are compared.
Technical Paper

Comparison between Unthrottled, Single and Two-valve Induction Strategies Utilising Direct Gasoline Injection: Emissions, Heat-release and Fuel Consumption Analysis

2008-06-23
2008-01-1626
For a spark-ignition engine, the parasitic loss suffered as a result of conventional throttling has long been recognised as a major reason for poor part-load fuel efficiency. While lean, stratified charge, operation addresses this issue, exhaust gas aftertreatment is more challenging compared with homogeneous operation and three-way catalyst after-treatment. This paper adopts a different approach: homogeneous charge direct injection (DI) operation with variable valve actuations which reduce throttling losses. In particular, low-lift and early inlet valve closing (EIVC) strategies are investigated. Results from a thermodynamic single cylinder engine are presented that quantify the effect of two low-lift camshafts and one standard high-lift camshaft operating EIVC strategies at four engine running conditions; both, two- and single-inlet valve operation were investigated. Tests were conducted for both port and DI fuelling, under stoichiometric conditions.
Technical Paper

Cycle-to-Cycle Variation Analysis of Two-Colour PLIF Temperature Measurements Calibrated with Laser Induced Grating Spectroscopy in a Firing GDI Engine

2019-04-02
2019-01-0722
In-cylinder temperatures and their cyclic variations strongly influence many aspects of internal combustion engine operation, from chemical reaction rates determining the production of NOx and particulate matter to the tendency for auto-ignition leading to knock in spark ignition engines. Spatially resolved measurements of temperature can provide insights into such processes and enable validation of Computational Fluid Dynamics simulations used to model engine performance and guide engine design. This work uses a combination of Two-Colour Planar Laser Induced Fluorescence (TC-PLIF) and Laser Induced Grating Spectroscopy (LIGS) to measure the in-cylinder temperature distributions of a firing optically accessible spark ignition engine. TC-PLIF performs 2-D temperature measurements using fluorescence emission in two different wavelength bands but requires calibration under conditions of known temperature, pressure and composition.
Journal Article

Experimental Study on the Burning Rate of Methane and PRF95 Dual Fuels

2016-04-05
2016-01-0804
Natural gas as an alternative fuel offers the potential of clean combustion and emits relatively low CO2 emissions. The main constitute of natural gas is methane. Historically, the slow burning speed of methane has been a major concern for automotive applications. Literature on experimental methane-gasoline Dual Fuel (DF) studies on research engines showed that the DF strategy is improving methane combustion, leading to an enhanced initial establishment of burning speed even compared to that of gasoline. The mechanism of such an effect remains unclear. In the present study, pure methane (representing natural gas) and PRF95 (representing gasoline) were supplied to a constant volume combustion vessel to produce a DF air mixture. Methane was added to PRF95 in three different energy ratios 25%, 50% and 75%. Experiments have been conducted at equivalence ratios of 0.8, 1, 1.2, initial pressures of 2.5, 5 and 10 bar and a temperature of 373K.
Technical Paper

In-Nozzle and Spray Diagnostic Techniques for Real Sized Pressure Swirl and Plain Orifice Gasoline Direct Injectors

2003-10-27
2003-01-3151
The use of Direct Injection for spark ignition engines is increasing, with a noticeable trend towards smaller flow orifices as the requirement for improved atomisation increases and improved manufacturing capabilities allow micron sized holes to be mass produced. It is necessary therefore to develop test rigs and diagnostic techniques that will allow the collection of data from inside real sized nozzles in order to validate CFD models and allow optimized nozzle geometries to be rapidly designed and produced. This paper demonstrates real sized optical nozzles and diagnostic techniques that have allowed geometry evaluation and optimization in pressure swirl and plain orifice nozzles as small as 150μm.
Technical Paper

Ion Current Signal Interpretation via Artificial Neural Networks for Gasoline HCCI Control

2006-04-03
2006-01-1088
The control of Homogeneous Charge Compression Ignition (HCCI) (also known as Controlled Auto Ignition (CAI)) has been a major research topic recently, since this type of combustion has the potential to be highly efficient and to produce low NOx and particulate matter emissions. Ion current has proven itself as a closed loop control feedback for SI engines. Based on previous work by the authors, ion current was acquired through HCCI operation too, with promising results. However, for best utilization of this feedback signal, advanced interpretation techniques such as artificial neural networks can be used. In this paper the use of these advanced techniques on experimental data is explored and discussed. The experiments are performed on a single cylinder cam-less (equipped with a Fully Variable Valve Timing (FVVT) system) research engine fueled with commercially available gasoline (95 ON).
Journal Article

Large Eddy Simulation of Premixed Combustion in Spark Ignited Engines Using a Dynamic Flame Surface Density Model

2013-04-08
2013-01-1086
In this work, cyclic combustion simulations of a spark ignition engine were performed using the Large Eddy Simulation techniques. The KIVA-4 RANS code was modified to incorporate the LES capability. The flame surface density approach was implemented to model the combustion process. Ignition and flame kernel models were also developed to simulate the early stage of flame propagation. A dynamic procedure was formulated where all model coefficients were locally evaluated using the resolved and test filtered flow properties during the fully developed phase of combustion. A test filtering technique was adopted to use in wall bounded systems. The developed methodology was then applied to simulate the combustion and associated unsteady effects in a spark ignition engine. The implementation was validated using the experimental data taken from the same engine.
X