Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

High-Speed LIF Imaging for Cycle-Resolved Formaldehyde Visualization in HCCI Combustion

2005-04-11
2005-01-0641
High-speed laser diagnostics was utilized for single-cycle resolved studies of the formaldehyde distribution in the combustion chamber of an HCCI engine. A multi-YAG laser system consisting of four individual Q-switched, flash lamp-pumped Nd:YAG lasers has previously been developed in order to obtain laser pulses at 355 nm suitable for performing LIF measurements of the formaldehyde molecule. Bursts of up to eight pulses with very short time separation can be produced, allowing capturing of LIF image series with high temporal resolution. The system was used together with a high-speed framing camera employing eight intensified CCD modules, with a frame-rate matching the laser pulse repetition rate. The diagnostic system was used to study the combustion in a truck-size HCCI engine, running at 1200 rpm using n-heptane as fuel. By using laser pulses with time separations as short as 70 μs, cycle-resolved image sequences of the formaldehyde distribution were obtained.
Technical Paper

Investigation of the Fuel Distribution and the In-cylinder Flow Field in a Stratified Charge Engine Using Laser Techniques and Comparison with CFD-Modelling

1999-10-25
1999-01-3540
This paper presents an investigation of a Volvo Direct Injection Spark Ignition (DISI) engine, where the fuel distribution and the in-cylinder flow field have been mapped by the use of laser techniques in an engine with optical access. Along with the experimental work, CFD-modelling of flow and fuel distribution has been performed. Laser Induced Fluorescence (LIF) visualisation of the fuel distribution in a DI-engine has been performed using an endoscopic detection system. Due to the complex piston crown geometry it was not possible to monitor the critical area around the sparkplug with conventional, through the piston, detection. Therefore, an endoscope inserted in the spark plug hole was used. This approach gave an unrestricted view over the desired area. In addition, the in-cylinder flow fields have been monitored by Particle Image Velocimetry (PIV) through cylinder and piston. The results from both the LIF and the PIV measurements have been compared with CFD-modelling at Volvo.
Technical Paper

Optical Diagnostics Applied to a Naturally Aspirated Homogeneous Charge Compression Ignition Engine

1999-10-25
1999-01-3649
Basic optical properties have been investigated in order to characterize the HCCI-combustion process. Basic optical properties of a Homogeneous Charge Compression Ignition (HCCI) engine have been investigated in order to characterize the combustion process. The absorption of light propagating through the combustion chamber has been spectrally resolved for four different fuels. Significant differences between the fuels could be detected. Complementary information could be obtained by recording spontaneous emission of radiation during combustion. Raman point measurements were used to quantify cycle-to-cycle variations of the equivalence ratio. The homogeneity of the charge was monitored by the use of two-dimensional tracer LIF. That method was also utilized to investigate the flame development. The experiments were performed in a six-cylinder, truck-sized engine with one cylinder modified to allow for optical access.
Technical Paper

Prediction Tool for the Ion Current in SI Combustion

2003-10-27
2003-01-3136
In this work, constant volume combustion is studied using a zero-dimensional FORTRAN code, which is a wide-ranging chemical kinetic simulation that allows a closed system of gases to be described on the basis of a set of initial conditions. The model provides an engine- or reactor-like environment in which the engine simulations allow for a variable system volume and heat transfer both to and from the system. The combustion chamber is divided into two zones as burned and unburned ones, which are separated by an assumed thin flame front in the combustion model used for this work. Equilibrium assumptions have been adopted for the modeling of the thermal ionization, where Saha's equation was derived for singly ionized molecules. The investigation is focused on the thermal ionization of NO as well as for other species. The outputs generated by the model are temperature profiles, species concentration profiles, ionization degree and an electron density for each zone.
X