Refine Your Search

Search Results

Viewing 1 to 17 of 17
Journal Article

A Low Temperature Coolant Conditioning Cart for Testing DEF Thawing Systems

2021-04-06
2021-01-0612
Diesel Exhaust Fluid (DEF) systems are required to function in cold ambient temperatures below the freezing point of DEF. Manufacturers may demonstrate compliance by following an EPA guidance procedure described below [2], using whole vehicles at winter test sites at −18 deg C or lower. However, commercial trucks may have multiple variants with different DEF system layouts, so it is impractical to test every possible configuration. A climatic chassis dynamometer (CCD) can also be used for this test, but this is still expensive and time consuming, and does not address the problem of complexity. Instead, much time and expense can be saved by using simulation methods to identify worst case configurations, and to demonstrate with confidence that a limited number of tests will cover the whole possible range. This methodology can further be used to show that a range of vehicles can be represented with selected rig tests in a cold chamber.
Technical Paper

Active Pre-Chamber as a Technology for Addressing Fuel Slip and its Associated Challenges to Lambda Estimation in Hydrogen ICEs

2023-09-29
2023-32-0041
Heavy duty hydrogen (H2) internal combustion engines (ICEs), typically conversions from base diesel engines, can experience significant deterioration of combustion efficiency with enleanment despite relative engine stability due in part to non-optimized combustion chamber geometry for spark ignited (SI) combustion. This causes un-combusted H2 to “slip” into the exhaust largely undetected since it is not a typically measured exhaust species. In this study, several implications of H2 slip in H2 ICEs are explored. The sensitivity of air fuel ratio (AFR) measurement to H2 slip is discussed. The challenge this poses for closed-loop transient controls and the impact on nitrogen oxides (NOx) emissions are also shown. Finally, test results from an H2 ICE using an active pre-chamber highlight the improvement in combustion efficiency and transient stability relative to a baseline SI engine.
Technical Paper

An Introduction to How Low Speed Pre Ignition Affects Engine Components

2017-03-28
2017-01-1042
Current market demands in conjunction with increasingly stringent emission legislation have vehicle manufactures striving to improve fuel economy and reduce CO2 emissions. One way to meet these demands is through engine downsizing. Engine downsizing allows for reduced pumping and frictional losses. To maintain acceptable drivability and further increase efficiency, power density increase through the addition of boosting is employed. Furthermore, efficiencies have been realized through the use of high gear count transmissions, providing an opportunity for manufactures to effectively down speed the engine whilst still achieving the desired drivability characteristics. As a result of these efficiency improvements, gasoline turbo charged direct injected (GTDI) engines are developed for and tend to operate in low engine speed, high torque conditions .
Technical Paper

Benefits of Octane-On-Demand in an E10-Gasoline Engine Vehicle Using an On-Board Fuel Separator

2022-03-29
2022-01-0424
Knock in gasoline engines at higher loads is a significant constraint on torque and efficiency. The anti-knock property of a fuel is closely related to its research octane number (RON). Ethanol has superior RON compared to gasoline and thus has been commonly used to blend with gasoline in commercial gasolines. However, as the RON of a fuel is constant, it has not been used as needed in a vehicle. To wisely use the RON, an On-Board Separation (OBS) unit that separates commercial gasoline with ethanol content into high-octane fuel with high ethanol fraction and a lower octane remainder has been developed. Then an onboard Octane-on-demand (OOD) concept uses both fuels in varying proportion to provide to the engine a fuel blend with just enough RON to meet the ever changing octane requirement that depends on driving pattern.
Technical Paper

Development of a High Power, Low Emissions Heavy Duty Hydrogen Engine

2024-04-09
2024-01-2610
The hydrogen (H2) internal combustion engine (ICE) is emerging as an attractive low life-cycle carbon powertrain configuration for applications that require high power, high duty cycle operation. Owing to the relative ease of conversion of heavy duty (HD) diesel ICEs to H2 and the potential for low exhaust emissions, H2 ICEs are expected to play a strong role in rapidly decarbonizing hard-to-electrify markets such as off-road, rail, and marine. The conversion of HD diesel ICEs to spark ignited H2 with port fuel injection is typically accompanied by a de-rating of engine power and torque. This is due to several fuel- and system-related challenges, including the high risk of abnormal combustion resulting from the low auto-ignition energy threshold of H2, and boost system requirements for highly dilute operation that is used to partially mitigate this abnormal combustion risk.
Journal Article

Lambda Determination Challenges for Ultra-Lean Hydrogen-Fueled Engines and the Impact on Engine Calibration

2023-04-11
2023-01-0286
An increasing number of zero emission powertrain technologies will be required for meeting future CO2 targets. While this demand will be met by battery and fuel cell electric vehicles in several markets, other solutions are needed for harder to electrify sectors. Hydrogen (H2) internal combustion engines (ICEs) have become an attractive option for high power, high duty cycle vehicles and are expected to play a strong role in achieving zero emission goals. A unique characteristic of H2 ICEs is their ability to operate extremely lean, with lambda (λ) greater than 2. At such conditions, a multitude of benefits are observed including higher thermal efficiency, lower engine-out nitrogen oxides (NOx) emissions, and mitigating common problems with H2 abnormal combustion such pre-ignition and knock. However, two critical issues arise during extreme enleanment of H2 ICEs which have practical implications on controls and calibration of these engines.
Technical Paper

Methodology for Combustion Analysis of a Spark Ignition Engine Incorporating a Pre-Chamber Combustor

2014-10-13
2014-01-2603
With an increasing global awareness of the need to conserve fuel resources and reduce carbon dioxide emissions, the automotive sector has been seeking gains in engine efficiency. One such method for achieving these gains on a spark ignition (SI) engine platform is through lean burn operation. Ultra-lean operation (λ>2) has demonstrated the ability to increase thermal efficiency and significantly reduce emissions of nitrogen oxides (NOx) due primarily to lower mean gas temperatures. Turbulent Jet Ignition (TJI), a pre-chamber-based combustion system, is a technology that enables ultra-lean operation. TJI is also an effective knock mitigation system due to the distributed nature of main chamber ignition, resulting in rapid burn rates. Pre-chamber combustors such as that utilized in TJI have been studied extensively for decades, but the interaction of the combustion events between the two chambers is not well understood.
Journal Article

Optimization of Lambda across the Engine Map for the Purpose of Maximizing Thermal Efficiency of a Jet Ignition Engine

2020-04-14
2020-01-0278
Progressively more stringent efficiency and emissions regulations for internal combustion engines have led to growing interest in advanced combustion concepts for spark ignition engines. MAHLE Jet Ignition® (MJI) is one such concept which enables ultra-lean (λ > ~1.6) combustion via air dilution. This pre-chamber-based combustion system has demonstrated highly efficient lean operation, producing efficiencies competitive with those of advanced compression ignition concepts. Compared to a traditional spark ignition engine, the additional degrees of freedom associated with Jet Ignition introduce further complexity when optimizing the system for peak efficiency throughout the engine map. The relationship between operating condition and the lambda at which peak efficiency occurs for a Jet Ignition engine has been presented in prior work by the authors.
Technical Paper

RANS Based Multidimensional Modeling of an Ultra-Lean Burn Pre-Chamber Combustion System with Auxiliary Liquid Gasoline Injection

2015-04-14
2015-01-0386
Evolving emissions and fuel efficiency legislation has driven the development of ultra-lean burn engine concepts that combine high efficiency with low criteria emissions, including nitrogen oxides (NOx). Traditional spark ignition (SI) systems have limitations in terms of available ignition energy and its distribution. Turbulent Jet Ignition (TJI) is a pre-chamber-based combustion system that enables ultra-lean operation through high energy jets acting as a distributed ignition source. Combustion is initiated in the pre-chamber (with or without auxiliary fuel injection) using a spark plug. The resulting flame is quenched in the pre-chamber nozzle thereby generating chemically active turbulent jets which penetrate and reignite in the main-chamber at multiple points after a time delay.
Technical Paper

Spark Ignition and Pre-Chamber Turbulent Jet Ignition Combustion Visualization

2012-04-16
2012-01-0823
Natural gas is a promising alternative fuel as it is affordable, available worldwide, has high knock resistance and low carbon content. This study focuses on the combustion visualization of spark ignition combustion in an optical single cylinder engine using natural gas at several air to fuel ratios and speed-load operating points. In addition, Turbulent Jet Ignition optical images are compared to the baseline spark ignition images at the world-wide mapping point (1500 rev/min, 3.3 bar IMEPn) in order to provide insight into the relatively unknown phenomenon of Turbulent Jet Ignition combustion. Turbulent Jet Ignition is an advanced spark initiated pre-chamber combustion system for otherwise standard spark ignition engines found in current passenger vehicles. This next generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine.
Technical Paper

Sub-200 g/kWh BSFC on a Light Duty Gasoline Engine

2016-04-05
2016-01-0709
Increasingly stringent global fuel economy and carbon dioxide (CO2) legislation for light duty passenger cars has created an interest in unconventional operating modes. One such mode in spark ignition (SI) gasoline engines is lean combustion. While lean operation in SI engines has previously demonstrated the ability to reduce fuel consumption, the degree of enleanment capability of the system is limited by increasingly unstable combustion in the lean region, particularly for homogeneous lean approaches. MAHLE Jet Ignition® (MJI) is a pre-chamber-based combustion system that extends this lean limit beyond the capabilities of modern SI engines by increasing the ignition energy present in the system. This allows the engine to exploit the benefits of homogeneous ultra-lean (λ > ∼1.6) combustion, namely reduced fuel consumption and reduced emissions of nitrogen oxides (NOx). Pre-chamber combustors such as that utilized in MJI have been studied extensively for decades.
Technical Paper

The Effect of Homogeneous Lean Combustion on Efficiency and Emissions Trends in Natural Gas-Fueled Small Engines

2021-04-06
2021-01-0652
Alternative combustion modes for spark ignition engines, such as homogeneous lean combustion, have been extensively researched in transportation and large stationary power applications due to their inherent emissions and fuel efficiency benefits. However, these types of approaches have not been explored for small engines (≤ 30 kW), as the various applications for these engines have historically had significantly different market demands and less stringent emissions requirements. However, going forward, small engines will need to incorporate new technologies to meet increasingly stringent regulatory guidelines. One such technology is jet ignition, enables lean combustion via air dilution through the use of a pre-chamber combustor.
Journal Article

The Effects of Charge Homogeneity and Repeatability on Particulates Using the PLIF Technique in an Optical DISI Engine

2014-04-01
2014-01-1207
The work was concerned with visualisation of the charge homogeneity and cyclic variations within the planar fuel field near the spark plug in an optical spark ignition engine fitted with an outwardly opening central direct fuel injector. Specifically, the project examined the effects of fuel type and injection settings, with the overall view to understanding some of the key mechanisms previously identified as leading to particulate formation in such engines. The three fuels studied included a baseline iso-octane, which was directly compared to two gasoline fuels containing 10% and 85% volume of ethanol respectively. The engine was a bespoke single cylinder with Bowditch style optical access through a flat piston crown. Charge stratification was studied over a wide spectrum of injection timings using the Planar Laser Induced Fluorescence (PLIF) technique, with additional variation in charge temperature due to injection also estimated when viable using a two-line PLIF approach.
Technical Paper

The Effects of Turbulent Jet Characteristics on Engine Performance Using a Pre-Chamber Combustor

2014-04-01
2014-01-1195
Increasingly stringent US fuel economy regulation has emphasized the need for automotive engines to achieve greater levels of efficiency. Lean operation in spark ignition engines has demonstrated the ability to increase thermal efficiency, but this is typically accompanied by increased nitrogen oxides (NOx) emissions. Ultra-lean operation (λ > 2), however, has demonstrated increased thermal efficiency and the potential for significant reductions in NOx. Turbulent Jet Ignition (TJI) enables ultra-lean operation by utilizing radical turbulent jets emerging from a pre-chamber combustor as the ignition source for main chamber combustion in a spark ignition engine. This study seeks to better understand the interaction between the pre-chamber and main chamber combustion events, specifically the effect that particular TJI design parameters have on this interaction.
Journal Article

The Impact of Advanced Fuels and Lubricants on Thermal Efficiency in a Highly Dilute Engine

2021-04-06
2021-01-0462
In spark ignited engines, thermal efficiency is strongly influenced by the quality of the combustion process as initiated by the ignition system. Jet Ignition is a combustion concept that utilizes a small pre-chamber to produce reactive jets which distribute ignition energy throughout the main combustion chamber. This distributed ignition energy can be leveraged to induce ignition in traditionally difficult-to-ignite regimes, such as in highly dilute mixtures. Highly dilute jet ignition combustion has been proven to produce thermal efficiencies significantly higher than those of conventional spark ignition combustion. To fully exploit the efficiency potential of active jet ignition, multiple aspects of the engine architecture and peripheral systems must be adjusted. Efficiency sensitivities to compression ratio, boost system, and intake port design have been explored extensively.
Technical Paper

The Impact of Engine Displacement on Efficiency Loss Pathways in a Highly Dilute Jet Ignition Engine

2019-04-02
2019-01-0330
Internal combustion engines currently face increasing regulatory reform which has motivated investigation of alternative combustion modes, particularly for spark ignition engines. Fuel economy regulations, among others, are presently driving the need for technological advances in the automotive sector. Stationary power generation is facing emissions standards that will be increasingly difficult to achieve with combustion-based current practices, particularly in the case of nitrogen oxides (NOx). Ultra-lean (λ > ~1.6; air-fuel ratio > 23:1) combustion via air dilution is one such combustion mode that provides the benefits of reduced fuel consumption and reduced NOx emissions. Jet ignition is a pre-chamber-based combustion system that enables enleanment beyond what is achievable with traditional spark ignition engines. Previous studies of MAHLE’s Jet Ignition® concept have primarily focused on light-duty gasoline engines.
Journal Article

Visualization of Propane and Natural Gas Spark Ignition and Turbulent Jet Ignition Combustion

2012-10-23
2012-32-0002
This study focuses on the combustion visualization of spark ignition combustion in an optical single cylinder engine using natural gas and propane at several air to fuel ratios and speed-load operating points. Propane and natural gas fuels were compared as they are the most promising gaseous alternative fuels for reciprocating powertrains, with both fuels beginning to find wide market penetration on the fleet level across many regions of the world. Additionally, when compared to gasoline, these gaseous fuels are affordable, have high knock resistance and relatively low carbon content and they do not suffer from the complex re-fueling and storage problems associated with hydrogen.
X