Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

A New System for Force and Moment Testing of Light Truck Tires

2003-03-03
2003-01-1272
Laboratory performance testing of larger tires requires system capability beyond larger diametric clearance and additional radial load capability. This paper describes a newly introduced Flat-Trac® tire test system designed for light truck tires and racing tires. Background on flat surface force and moment testing identifying the need for a system with more capability is presented. The MTS Flat-Trac LTR tire test system is introduced as a force and moment measurement system capable of testing light truck and racing tires. The first of these systems has been in operation at Bridgestone's Tokyo technical center since July 2002. Test results are presented to show that the Flat-Trac LTR (Light Truck/Racing) provides increased capability beyond the conventional Flat-Trac III CT (Cornering and Traction) system. Cornering force and longitudinal force test results are compared to show agreement between the Flat-Trac LTR and Flat-Trac CT systems.
Technical Paper

A Practical Implementation of ASAM-GDI on an Automated Model Based Calibration System

2003-03-03
2003-01-1030
The paper addresses the connectivity issues related to integrating an Automated Model Based Calibration System (MTS Atlas) to a dynamometer test bed data acquisition system using an ASAM-GDI Interface. The GDI (Generic Device Interface) implementation was chosen over other ASAM interfaces due to its real-time capabilities and the ability to host new GDI drivers as these drivers become available. A structured migration process is developed showing how a new interface standard can be implemented that integrates with legacy test equipment, yet provides a simple low cost mechanism allowing replacement of old or redundant equipment.
Technical Paper

An Examination of the Effect of Seat Free-Play on Modal Analysis Results

2003-05-05
2003-01-1598
With the amount of adjustability present in today's automotive seat, it is a given that some form of looseness and free-play will exist in the structure. The automotive seat community is commonly faced with free-play issues; this is a significant issue where modal analysis is concerned. Free-play creates a non-linear situation, causing a violation of the linear mathematics that modal analysis is based on. Obviously, this situation is not the ideal circumstances under which to perform modal testing and analysis, but 99.9% of the time, the receipt of better samples (reduced free-play) is not a likely option, and the test must still go on. Ideally, you would want to test this structure using random excitation with a shaker to minimize the nonlinearities and provide a repeatable input force.
Technical Paper

Correlation and Accuracy of a Wheel Force Transducer as Developed and Tested on a Flat-Trac® Tire Test System

1999-03-01
1999-01-0938
The wheel force transducer has been proven to be a cost and time effective tool for vehicle load data acquisition and simulation testing. The accuracy of wheel force transducers is typically given in terms of a static calibration, or a quasi-static system generated load case. The actual use of a wheel force transducer often involves high speed rotation, varying camber and steer of the tire on the vehicle, and other dynamic and rim related variations which deviate from the standard laboratory calibration. The Flat-Trac proves to be an excellent tool in the design process and evaluation of the wheel force transducer because it accurately controls and simulates the loading of a rotating wheel assembly. Through Flat-Trac System testing, issues that are critical to the use, accuracy, and integrity of data acquired through a wheel force transducer can be evaluated.
Technical Paper

Excitation Control for Consistent Modal Parameters When Testing Nonlinear Structures

2003-05-05
2003-01-1629
Many structures of practical interest exhibit a significant degree of nonlinearity. In such cases, the modal frequencies, damping, and amplitudes will change depending upon the excitation force level, response level and spectrum shape. When reporting the measured modal parameters from an artificial excitation test, the excitation conditions and response levels should be specified, and different modal models may be needed to represent the structural dynamics at different response amplitude levels. If the frequency responses are measured by moving accelerometers in multiple test runs, then it is important to maintain a consistent response level for all test runs. This paper describes a method to eliminate the variability of the response level between data sets by means of closed-loop control of the RMS level. The amplitude control program uses a nonlinear gain estimation technique to set the gain on a “proportional-integral” controller.
Technical Paper

Integration of Physical and Virtual Tools for Virtual Prototype Validation and Model Improvement

2003-10-27
2003-01-2813
Hyundai Motor Company has combined physical and virtual testing tools to validate a full vehicle virtual prototype. Today a large number of physical tests are still required because the cycle of “design-build-test-change” relies on complex models of components and systems that typically are not easily validated. In order to shorten the development cycles, engineers perform multi-body simulations to dynamically excite components and systems and thereby estimate their durability under dynamic loads. The approach described herein demonstrates the feasibility of correlating the output from the corresponding physical and virtual prototype. Both synthetic and road load events are employed to excite physical and virtual vehicles, reveal difference in response, and ultimately improve the predictive capability of the model.
Technical Paper

Motorcycle Secondary Drive Testing using a Servo-Hydraulic Laboratory Test System

2004-09-27
2004-32-0045
This paper documents the process used to correlate the secondary belt degradation experienced on the test track with the secondary belt degradation experienced during laboratory tests using a Secondary Drive Test System. Two different software products were used to produce this correlation: nCode's pseudo-damage functionality was used to estimate the proportional belt degradation and MTS's RPC Pro functionality was used to edit the field data, create a time history file, and to shift the frequency domain of the vehicle into the usable range of the servo-hydraulic actuator (time stretching). For purposes of this paper, the test data and information presented in this paper is based on two different secondary drive belts that were used on the test track as well as in the laboratory tests. As will be shown, the plot information that resulted from these tests showed very good correlation.
Technical Paper

New Methods of Side Impact Simulation for Better Waveform Reproduction and Door Interaction

2004-03-08
2004-01-0474
As a result of the severity of occupant injuries during a side impact collision, there has been an escalating demand for accurate component level side impact simulation. Three major components for accurate simulation are accurate door velocity, door to seat relative velocity, and door deformation. This paper shows data demonstrating accurate door velocity reproduction, presents test methods to passively and actively control relative seat to door velocity in a non destructive manner, and presents test methods to simulate real time door deformation in a destructive manner. All side impact waveforms include a negative acceleration, high positive accelerations, high jerk, and high frequency content that add to the complexity of this simulation. The simulated door velocity is produced by means of a MTS deceleration brake that only applies a braking force during the deceleration portion of the waveform to maximize acceleration capacity.
Technical Paper

Predicting Tire Handling Performance Using Neural Network Models

2004-03-08
2004-01-1574
Recent studies have shown that complex vehicle components such as shock absorbers, rubber bushings, and engine mounts can be accurately modeled by combining laboratory measurements with neural network technology. These nonlinear dynamic blackbox models (also known as Empirical Dynamics1 models) make it possible to predict nonlinear and hysteretic component behavior over wide ranges of amplitude and frequency. The models can handle realistic input waveforms as well as multiple inputs and multiple outputs. These techniques have now been applied to rolling pneumatic tires, to enable high accuracy predictions of tire and vehicle handling behavior. Models that predict high amplitude force components (three forces and three moments) using up to four randomly-varying inputs (radial deflection, slip angle, and camber angle, and slip ratio) have been successfully generated, using data obtained from MTS Flat-Trac III tire test equipment.
Journal Article

Reducing Power Demand for Heavy Suspension Tests

2008-04-14
2008-01-0690
Competitive pressures, globalization of markets, and integration of new materials and technologies into heavy vehicle suspension systems have increased demand for durability validation of new designs. Traditional Proving Ground and on-road testing for suspension development have the limitations of extremely long test times, poor repeatability and the corresponding difficultly in getting good engineering level data on failures. This test approach requires a complete vehicle driven continuously over severe Proving Ground events for extended periods. Such tests are not only time consuming but also costly in terms of equipment, maintenance, personnel, and fuel. Ideally multiple samples must be tested to accumulate equivalent millions of kilometers of operation in highly damaging environments.
Technical Paper

Sound Decomposition - A Key to Improved Sound Simulation

2003-05-05
2003-01-1423
The sound field in a vehicle is one of the most complex environments being a mixture of multiple, correlated and uncorrelated sound sources. The simulation of vehicle interior sound has traditionally been produced by combining multiple test results where the influence of one source is enhanced while the other sources are suppressed, such as towing the vehicle on a rough surface for road noise, or measuring noise in a wind tunnel. Such methods are costly and provide inherent inaccuracies due to source contamination and lack of synchronization between sources. In addition they preclude the addition of analytical predictions into the simulation. The authors propose an alternative approach in which the component sounds are decomposed or separated from a single operating measurement and which provide the basis for accurate sound synthesis.
Journal Article

Terrain Profile Estimation for use in Suspension Simulation Testing

2008-04-14
2008-01-1414
Efforts by vehicle manufacturers to reduce road testing have resulted in an increased reliance on the simulation methods for loads measurement and validation, including increased emphasis on methods to characterize and digitally represent test road inputs. Accurate terrain models are especially important in the case of large dynamic road inputs, and for evaluation of vehicle suspension loads and durability. In contrast to direct terrain topology measurement, methods to estimate test road input using only vehicle suspension measurements and a tire dynamic model will be presented. Applications of terrain models for generic simulation and testing will also be discussed.
Technical Paper

The Use of Fatigue Sensitive Critical Locations in Correlation of Vehicle Simulation and In-Service Environments

1988-04-01
880807
A major challenge facing the vehicle simulation test laboratory is correlating (and thereby validating) the simulated “test track” with the In-service environment. This simulation is key to the use of data for durability analysis from the integrated design and testing engineering process. Presented here is an approach to integrating road simulation test and fatigue life analysis that produces needed results for test, design and analysis engineers. The core of the analysis is a fatigue-based “rig-to-road” comparison for an on-highway vehicle using strain-time data acquired at fatigue sensitive locations. The cyclic and fatigue damaging content of the field and simulation profiles are compared quantitatively for purposes of validating the laboratory lest, and to illustrate a method of reporting this validation to design and analysis engineers.
Technical Paper

Tools for Integration of Analysis and Testing

2003-05-05
2003-01-1606
The automotive vehicle design process has relied for many years on both analytical studies and physical testing. Testing remains to be required due to the inherent complexities of structures and systems and the simplifications made in analytical studies. Simulation test methods, i.e. tests that load components with forces derived from actual operating conditions, have become the accepted standard. Advanced simulation tools like iterative deconvolution methods have been developed to address this need. Analytical techniques, such as multi body simulation have advanced to the degree that it is practical to investigate the dynamic behavior of components and even full vehicles under the influence of operational loads. However, the approach of testing and analysis are quite unique and no seamless bridge between the two exists. This paper demonstrates an integrated approach to combine testing and analysis together in the form of virtual testing.
Technical Paper

Virtual Testing and Correlation with Spindle Coupled Full Vehicle Testing System

2006-04-03
2006-01-0993
This paper describes an approach to simulate spindle coupled full vehicle durability tests for the purpose of completing virtual durability evaluations on components and full vehicles before a prototype is available. The reproduction of measured spindle loads was achieved on a virtual model of a passenger car coupled to a 4 Degree of Freedom (DOF) and 6 DOF spindle coupled test system. The tools and process improvements developed here will aid both test and analysis engineers in working closer together in solving their durability problems. By using Remote Parameter Control® (RPC®) technology in the virtual world, analysts have a new method to understand the virtual model by reproducing field-measured or generic road predicted signals for a variety of road surfaces. With newly created test rig models and a user friendly RPC™ iteration process, virtual testing that accurately replicates laboratory tests are now a reality.
X