Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Comprehensive Powertrain Model to Evaluate the Benefits of Electric Turbo Compound (ETC) in Reducing CO2 Emissions from Small Diesel Passenger Cars

2014-04-01
2014-01-1650
In the last years the automotive industry has been involved in the development and implementation of CO2 reducing concepts such as the engines downsizing, stop/start systems as well as more costly full hybrid solutions and, more recently, waste heat recovery technologies. These latter include ThermoElectric Generator (TEG), Rankine cycle and Electric Turbo Compound (ETC) that have been practically implemented on few heavy-duty application but have not been proved yet as effective and affordable solutions for the automotive industry. The paper deals with the analysis of opportunities and challenges of the Electric Turbo Compound for automotive light-duty engines. In the ETC concept the turbine-compressor shaft is connected to an electric machine, which can work either as generator or motor. In the former case the power can satisfy the vehicle electrical demand to drive the auxiliaries or stored in the batteries.
Technical Paper

Development and Validation of a Methodology for Real-Time Evaluation of Cylinder by Cylinder Torque Production Non-Uniformities

2011-09-11
2011-24-0145
Modern internal combustion engine control systems require on-board evaluation of a large number of quantities, in order to perform an efficient combustion control. The importance of optimal combustion control is mainly related to the requests for pollutant emissions reduction, but it is also crucial for noise, vibrations and harshness reduction. Engine system aging can cause significant differences between each cylinder combustion process and, consequently, an increase in vibrations and pollutant emissions. Another aspect worth mentioning is that newly developed low temperature combustion strategies (such as HCCI combustion) deliver the advantage of low engine-out NOx emissions, however, they show a high cylinder-to-cylinder variation. For these reasons, non uniformity in torque produced by the cylinders in an internal combustion engine is a very important parameter to be evaluated on board.
Technical Paper

Diesel Engine Acoustic Emission Analysis for Combustion Control

2012-04-16
2012-01-1338
Future regulations on pollutant emissions will impose a drastic cut on Diesel engines out-emissions. For this reason, the development of closed-loop combustion control algorithms has become a key factor in modern Diesel engine management systems. Diesel engines out-emissions can be reduced through a highly premixed combustion portion in low and medium load operating conditions. Since low-temperature premixed combustions are very sensitive to in-cylinder thermal conditions, the first aspect to be considered in newly developed Diesel engine control strategies is the control of the center of combustion. In order to achieve the target center of combustion, conventional combustion control algorithms correct the measured value varying main injection timing. A further reduction in engine-out emissions can be obtained applying an appropriate injection strategy.
Technical Paper

Thermal Management Strategies for SCR After Treatment Systems

2013-09-08
2013-24-0153
While the Diesel Particulate Filter (DPF) is actually a quasi-standard equipment in the European Diesel passenger cars market, an interesting solution to fulfill NOx emission limits for the next EU 6 legislation is the application of a Selective Catalytic Reduction (SCR) system on the exhaust line, to drastically reduce NOx emissions. In this context, one of the main issues is the performance of the SCR system during cold start and warm up phases of the engine. The exhaust temperature is too low to allow thermal activation of the reactor and, consequently, to promote high conversion efficiency and significant NOx concentration reduction. This is increasingly evident the smaller the engine displacement, because of its lower exhaust system temperature (reduced gross power while producing the same net power, i.e., higher efficiency).
Technical Paper

Tuning of the Engine Control Variables of an Automotive Turbocharged Diesel Engine via Model Based Optimization

2011-09-11
2011-24-0146
The paper deals with the steady-state optimal tuning of control variables for an automotive turbocharged Diesel engine. The optimization analysis is based on an engine simulation model, composed of a control oriented model of turbocharger integrated with a predictive multi-zone combustion model, which allows accounting for the impact of control variables on engine performance, NOx and soot emissions and turbine outlet temperature. This latter strongly affects conversion efficiency of after treatment devices therefore its estimation is of great interest for both control and simulation of tailpipe emissions. The proposed modeling structure is aimed to support the engine control design for common-rail turbocharged Diesel engines with multiple injections, where the large number of control parameters requires a large experimental tuning effort.
Technical Paper

UEGO-based Exhaust Gas Mass Flow Rate Measurement

2012-09-10
2012-01-1627
New and upcoming exhaust emissions regulations and fuel consumption reduction requirements are forcing the development of innovative and particularly complex intake-engine-exhaust layouts. Especially in the case of Compression Ignition (CI) engines, the HC-CO-NOx-PM after-treatment system is becoming extremely expensive and sophisticated, and the necessity to further reduce engine-out emission levels, without significantly penalizing fuel consumption figures, may lead to the adoption of intricate and challenging intake-exhaust systems configurations. The adoption of both long- and short-route Exhaust Gas Recirculation (EGR) systems is one example of such situation, and the need to precisely measure (or estimate) mass flow rates in the various elements of the gas exchange circuit is one of the consequences.
X