Refine Your Search

Topic

Author

Search Results

Technical Paper

A Case Study of Compressor Surge Related Noise on Turbocharged 2.0-L Gasoline Engine

2021-09-22
2021-26-0282
Till recently supercharging was the most accepted technique for boost solution in gasoline engines. Recent advents in turbochargers introduced turbocharging technology into gasoline engines. Turbocharging of gasoline engines has helped in powertrains with higher power density and less overall weight. Along with the advantages in performance, new challenges arise, both in terms of thermal management as well as overall acoustic performance of powertrains. The study focuses mainly on NVH aspects of turbocharging of gasoline engines. Compressor surge is a most common phenomenon in turbochargers. As the operating point on the compressor map moves closer to the surge line, the compressor starts to generate noise. The amplitude and frequency of the noise depends on the proximity of the operating point to the surge line. The severity of noise can be reduced by selecting a turbocharger with enough compressor surge margin.
Technical Paper

A Unique Methodology to Evaluate the Metallic Noise Concern of a Dual-Mass Flywheel in Real-World Usage Conditions

2021-10-01
2021-28-0249
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration, and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMF’s are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the robustness of the DMF. In the present work, by capturing the Real-World Usage Profile (RWUP) conditions, a new methodology is developed to evaluate the robustness of a DMF fitted in a Sports utility vehicle (SUV). Ventilation holes are provided on clutch housing to improve convective heat transfer. Improvement in convective heat transfer will increase the life and will reduce clutch burning concerns. Cities like Mumbai, Chennai, Bangalore, roads will have clogged waters during rainy season. When the vehicle was driven in such roads, water enters inside the clutch housing through ventilation holes.
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Journal Article

An Experimental Study of Turbocharged Hydrogen Fuelled Internal Combustion Engine

2015-01-14
2015-26-0051
Hydrogen is considered as one of the potential alternate fuel and when compared to other alternate fuels like CNG, LPG, Ethanol etc., it has unique properties due to absence of carbon. In the current work, Hydrogen engine of 2.5 L, four cylinder, spark ignited Turbocharged-Intercooled engine is developed for Mini Bus application. Multi-point fuel injection system is used for injecting the hydrogen in the intake manifold. Initially, boost simulation is performed to select the optimum compression ratio and turbocharger. The literature review has shown that in-order to get the minimum NOx emissions Hydrogen engines must be operated between equivalence ratios ranging from 0.5 to 0.6. In the present study, full throttle performance is conducted mainly with the above equivalence ratio range with minimum advance for Maximum Brake Torque (MBT) ignition timing. At each operating point, the performance, emissions and combustion parameters are recorded and analyzed in detail.
Technical Paper

An Extensive Optimization Methodology to Validate the Exhaust After-Treatment System of a BS VI Compliant Modern Diesel Engine

2020-09-25
2020-28-0483
The Indian automotive industry has migrated from BS IV (Bharat stage IV) to BS VI (Bharat Stage VI) emission norms from 1st April 2020. This two-step migration of the emission regulations from BS IV to BS VI demands significant engineering efforts to design and integrate highly complex exhaust after-treatment system (EATS). In the present work, the methodology used to evaluate the EATS of a high power-density 1.5-liter diesel engine is discussed in detail. The EATS assembly of the engine consists of a diesel oxidation catalyst (DOC), a diesel particulate filter with selective catalytic reduction coating (sDPF), urea dosing module and urea mixer. Typically, all these components that are needed for emission control are integrated into a single canning of shell thickness ~1.5mm. Moreover, the complete EATS is directly mounted onto the engine with suitable mounting brackets on the cylinder block and cylinder head.
Technical Paper

Assessment of Cabin Leakage on Thermal Comfort and Fuel Efficiency of an SUV

2016-04-05
2016-01-0259
The main function of an air conditioning system in a vehicle is to provide the thermal comfort to the occupant at minimum possible energy consumption in all environmental conditions. To ensure the best possible thermal comfort, air conditioning system is optimized on various parameters like heat load, air flow distribution, glass area, trim quality, insulations and cabin leak rate. A minimum cabin leakage is regulatory requirements to ensure the air quality of cabin. Anything above the minimum cabin leak rate ultimately turn into reduced thermal comfort and additional energy consumption. The additional energy consumption to maintain the required thermal comfort in the cabin due to cabin leakage affects the fuel efficiency severely. In the present study, the effect of cabin leakage on fuel efficiency and thermal comfort is studied in details by varying the cabin leakage through mechanical means. The experiments are carried out in normal environmental condition and road condition.
Technical Paper

Chain Load Optimization through Fuel Pump Lobe Phasing and CAE Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0163
The introduction of CAFE (Corporate Average Fuel Economy) norms has put a lot of importance on improving the fuel economy of passenger car vehicles. One of the areas to improve the fuel economy is by reducing engine friction. Camshaft drive torque reduction is one such area that helps in engine friction reduction. This paper explains the camshaft drive torque optimization work done on a passenger car Diesel engine with DOHC (double overhead camshaft). The exhaust camshaft of the engine drives the high-pressure Fuel Injection Pump (FIP) in addition to valve actuation. Camshaft drive torque is reduced by reducing the chain load. This is done through optimum phasing of the FIP lobe that drives the fuel injection pump and the cam lobe actuating the exhaust valves. Additional boundary condition for the phasing is ensuring that the FIP lobe is in the fall region of its profile while the piston is at TDC. This helps in avoiding rail pressure fluctuation.
Technical Paper

Comparative Studies of Different VGT Designs on Performance and Smoke of CRDe Engine

2018-07-09
2018-28-0074
Diesel engines have occupied a significant position in passenger car applications in the present automotive sector. Turbochargers find a very prominent role in diesel engines of all applications in order to achieve desired power and better fuel economy. Gaining higher torque at lower engine speeds with low smoke levels is a very tough task with fixed geometry turbochargers due to availability of lower air mass resulting in higher smoke emissions. Variable geometry turbochargers are capable of providing better torque at lower speeds and reduced smoke emissions on Common Rail Diesel engines. The Variable Geometry Turbocharger types used in this study are straight profile nozzle vanes (sample A) and curved profile nozzle vanes (sample B). The curved profile vanes as seen in sample B results in reduced variation of circumferential pressure distortions.
Technical Paper

Computational and Experimental Investigations to Improve Performance, Emissions and Fuel Efficiency of a Single Cylinder Diesel Engine

2015-01-14
2015-26-0099
From International Energy Statistics (IES) survey, China, US and India are top three countries in emitting CO2 emissions. Further, worldwide national governments are focused to control CO2 emissions at source by stringent regulatory limits. OEMs and Research laboratories are working on several technology options such as advanced fuel injection system, optimizing in cylinder combustion system, thermal management and reduced engine friction to meet this legal requirements. In this paper, research work focused on improving combustion system through selection optimum bowl geometry and increasing volumetric efficiency through valve timings, profile and intake system using both 1D and 3D-CFD numerical approach. The main objective of this approach to utilize fossil fuel to its maximum potential in a single cylinder Naturally Aspirated (NA) water cooled engine with CRDI.
Technical Paper

Cost and Weight Efficient Differential Housing for Off-Road Vehicles

2016-02-01
2016-28-0133
Differential in Gear Box play vital role in Tractors for assisting it in turning and also to take straight path. Light weight machine always have advantage in terms of fuel economy and performance. Weight optimized rotating part have additional benefits of saving power loss, against stationary dead weight. Differential Housing is such a part, which rotates during the vehicle motion and torque transmission. [1] This paper describes a method by which weight of the Differential Housing is optimized. In this particular body of work, additional constraints of avoiding any change in existing cold forged parts like Bevel Gear & Pinion. This also have additional benefit of enhanced flow of Oil inside Differential Housing for better lubrication of Bevel Gears and Pinion. This resulted in weight saving of Differential Housing and finally fuel economy of Tractor.
Technical Paper

Design For Affordability -Composite Running Board

2015-01-14
2015-26-0070
Light weighting is the Current trends in automotive to achieve better fuel economy which helps for meeting fuel economy standards & to offset the higher fuel prices. Thus there is a need to develop composite running board which is light weight & structurally sound enough to meet the performance. The present paper provides a composite running board assembly for an automobile. The running board assembly includes a board, an insert body and a plurality of brackets. Upon stepping of a passenger on the board, the board transfers load on the insert body which subsequently transfers the load to the plurality of brackets thus facilitating even distribution of the load on the automobile body. This paper also put lights on the use of improved TRIZ application - an approach to inventive problem solving for designing highly affordable & light weight running board. The cost & weight reduction achieved with innovative design is about 40 % & 35 % comparing to existing cost & weight.
Technical Paper

Determination of Principal Variables for Prediction of Fuel Economy using Principal Component Analysis

2019-01-09
2019-26-0359
The complexity of Urban driving conditions and the human behavior introduces undesired variabilities while establishing Fuel economy for a vehicle. These variabilities pose a great challenge while trying to determine that single figure for assessment of vehicle’s fuel efficiency on an urban driving cycle. This becomes even more challenging when two or more vehicles are simultaneously evaluated with respect to a reference vehicle. The attempt to fit a generalized linear model, between Fuel Economy as predicted variable and components of a driving cycle as predictor variables produced oxymoronic and counter-institutive results. This is primarily due to existence of multi-collinearity among the predictor variables. The context of the study is to consider the event of driving on a cycle as a random sampling experiment. The outcome of a driving cycle is summarized into a list of predictor variables or components.
Technical Paper

Development & Customization of Test Cases for Start-stop Functionality to Achieve On-road Robustness

2013-11-27
2013-01-2875
The Micro-hybrid technology otherwise called as stop start system offers a significant improvement in fuel economy particularly in urban driving conditions, where more often the engine idles unnecessarily at traffic signals/jams. Micro-hybrid technology stops the engine at traffic signals/jams and starts the engine automatically on clearance of traffic signals/jams leading to reduced fuel consumption and emissions. This is achieved by monitoring several vehicle and engine parameters through appropriate sensing elements. In this study, the system architecture and functional definitions of start/stop system is defined. Equivalence class, boundary value and decision-table testing are used to generate test cases. On generation of test cases, their relevance on on-road robustness and scope for optimization towards time/efforts are analyzed. In the process, a matrix of different conditions and criteria are formulated. Under these conditions, the system behavior is evaluated.
Technical Paper

Effects of Governing Parameters on the Performance and Emissions of Hydrogen Engine for Automotive Application

2013-11-27
2013-01-2891
This report describes work performed jointly by Mahindra & Mahindra and IIT Delhi, including both simulations and single-cylinder engine development for three wheeler application, to quantify the effects of various parameters on the performance and NOx emission of an internal combustion engine fuelled by hydrogen. AVL Boost software was used to simulate the experimental conditions, by using Vibe 2-Zone combustion and Woschni heat models, together with kinetic equations for emission calculations. Developed AVL Boost Model was validated against the test result from a modified single cylinder CNG engine for three wheeler application fuelled with Hydrogen by comparing the performance and NOx emission at the same operating conditions. A good agreement was obtained between the results of the Boost Model and Experimental results.
Technical Paper

Energy Impact Analysis of Switchable Coolant Pump in a High Power Density Diesel Engine

2021-10-01
2021-28-0279
Over the years, Internal Combustion engines have evolved drastically from large naturally aspirated engines to small sized forced aspiration engines which have a power output comparable to that of higher capacity engines. Engine downsizing has become more prominent in the present world due to higher focus being exerted on Fuel Economy and tighter emission norms. In the process of achieving these highly efficient engines, their cooling systems are also designed to handle the higher thermal operating conditions. This leads to a negative impact on the cold NEDC cycle by resulting in a longer warmup periods to get the engine upto its optimum operating temperature. This has a major effect on both the combustion efficiency as well as the frictional resistance of the engine. Switchable coolant pumps are one way to address this problem by creating zero flow conditions to warmup the engine by restricting any unnecessary heat rejection and improving the in-cylinder temperature.
Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

Fuel Efficiency Simulation Methodology for Commercial Vehicles: Approach to Generate Dynamic Duty Cycles for Simulation

2021-09-22
2021-26-0343
Fuel efficiency is critical aspect for commercial vehicles as fuel is major part of operational costs. To complicate scenario further, fuel efficiency testing, unlike in passenger cars is more time consuming and laborious. Thus, to save on development cost and save time in actual testing, simulations plays crucial role. Typically, actual vehicle speed and gear usage is captured using reference vehicle in desired route and used it for simulation of target vehicle. Limitation to this approach is captured duty cycle is specific to powertrain and driver behavior of reference vehicle. Any change in powertrain or vehicle resistance or driver of target vehicle will alter duty cycle and hence duty cycle of reference vehicle is no more valid for simulation assessment. This paper demonstrates approach which uses combination of tools to address this challenge. Simulation approach proposed here have three parts.
Technical Paper

High Performance EGR Cooler Selection and its Fouling Behavior for a HSDI Diesel Engine

2015-01-14
2015-26-0087
Selection of EGR system is very complex for a particular engine application. The performance of the EGR system depends highly on the Cooler Heat Transfer Efficiency. Cooler effectiveness drops over a period of operation due to soot deposition, HC condensation, and fuel quality. This phenomenon is called as Cooler Fouling. Fouling cannot be avoided completely but the level of performance drop over time has to be studied and minimized. The minimum pressure drop and the highest efficiency in fouled condition is the target for selection of a cooler. In this study, various parameter combinations like tube shape and profile, tube length, number of tubes, tube diameter, and pitch of corrugations, which influence the cooler performance were tested. A better understanding of each of its effect on cooler effectiveness and fouling behavior was obtained. The tube shape was changed from rectangular to circular, also from smooth surface to corrugate.
Technical Paper

Improvement of Transient Response on a Downsized 4 Cylinder Engine for Automobile Application

2021-10-01
2021-28-0280
Ever since mainstreaming of automobiles, engineers are focusing on making the vehicles better by means of making them more efficient, powerful and less polluting. In this study, venues of improving low end torque via improvement in volumetric efficiency as well as proper selection of turbochargers is done. An in-depth analysis of gas dynamics with respect to valve timing is studied along with the AVL Boost 1D simulation. It was found that volumetric efficiency starts to improve when there is a reduction in exhaust - exhaust valve overlap. There is an improvement found in the fresh air ratio (lambda) as the residual gas content is reduced. After the selection of valve timing, turbocharger optimization is done with comparison between two turbine sizes. Along with turbocharger comparison, technology comparison is also done namely between normal electronic VGT (Variable Geometry Turbo) (bigger turbine) and electronic VGT coupled with waste gate (smaller turbine).
Technical Paper

Improving the Clutch Design Robustness by Virtual Validation to Predict Clutch Energy Dissipation and Temperature in Clutch Housing

2021-09-22
2021-26-0329
During the vehicle launch (i.e. moving the vehicle from “0” speed), the clutch would be slowly engaged by the Driver or Transmission Control Unit (in Automatic Transmission/Automatic Manual Transmission vehicle) for smooth torque transfer between engine and transmission. The clutch is designed to transfer max engine torque with min heat generation. During the clutch engagement, the difference in flywheel and gearbox input shaft speed is called the clutch slipping phase which then leads to a huge amount of energy being dissipated in terms heat due to friction. As a result, clutch surface temperature increases consistently, when the surface temperature crosses the threshold limit, the clutch wears out quickly or burns spontaneously. Hence it is crucial to predict the energy dissipation and temperature variation in various components of clutch assembly through virtual simulation.
X