Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

An Experimental Study of Mechanism of Body Panel Vibration in Booming Noise Reduction of Passenger Vehicles

2016-02-01
2016-28-0198
In a typical passenger vehicle, there can be different types of noises generated which are broadly categorized as Interior Noise and Exterior Noise. The interior noise sources can be further classified into noises which can be Structure Borne or Air Borne. One of the major sources of both structure borne and airborne noise generation is the powertrain of the vehicle. The structure-borne noise and vibrations generated from the powertrain is usually transferred to the vehicle body through its attachment points to the body and the powertrain driveline. These induced body vibrations can sometimes cause the acoustic cavity of the passenger cabin to go into resonance which results in an annoying and disturbing noise for the passengers, called Booming Noise. Very often, one or more than one vehicle body panels show a dominant contribution in inducing this acoustic cavity resonance.
Technical Paper

Design Optimization of Hood System for Pedestrian Headform Protection

2016-02-01
2016-28-0250
Hood is the closure provided in the frontal portion of the vehicle for covering the engine room. Any component disposed in the frontal portion of the vehicle becomes important because of aesthetic as well as regulatory requirements. Introduction of new regulations like pedestrian protection brings new challenges for the original equipment manufacturers and the governing authorities. Introduction of Pedestrian Protection regulation, a recent development in the automotive industry, has thrown several questions in front of original equipment manufacturers. This work explains the procedure to address such question and the learning associated with it.
Technical Paper

Design of Front Structure of Vehicle for Pedestrian Headform Protection

2017-03-28
2017-01-1298
Vehicle Hood being the face of a passenger car poses the challenge to meet the regulatory and aesthetic requirements. Urge to make a saleable product makes aesthetics a primary condition. This eventually makes the role of structure optimization much more important. Pedestrian protection- a recent development in the Indian automotive industry, known for dynamics of cost competitive cars, has posed the challenge to make passenger cars meeting the regulation at minimal cost. The paper demonstrates structure optimization of hood and design of peripheral parts for meeting pedestrian protection performance keeping the focus on low cost of ownership. The paper discusses development of an in-house methodology for meeting Headform compliance of a flagship model of Maruti Suzuki India Ltd., providing detailed analysis of the procedure followed from introduction stage of regulatory requirement in the project to final validation of the engineering intent.
Technical Paper

Design of Roof Rack Rails with Cost and Weight Optimization

2017-03-28
2017-01-1308
The fuel efficiency of a vehicle depends on multiple factors such as engine efficiency, type of fuel, aerodynamic drag, and tire friction and vehicle weight. Analysis of weight and functionality was done, to develop a lightweight and low-cost Roof rack rail. The Roof rack rail is made up of a lightweight material with thin cross section and has the design that allows the fitment of luggage carrier or luggage rack on the car roof. In starting this paper describes the design and weight contribution by standard Roof rack rail and its related parts. Secondly, the selection of material within different proposed options studied and a comparison of manufacturing and design-related factors. Thirdly, it has a description of the design of Roof rack rail to accommodate the luggage carrier fitment on the car roof. Moreover, optimizations of Roof rack rail design by continuous change in position, shape, and parts used.
Technical Paper

Interior Noise Reduction in a Passenger Vehicle through Mode Modulation of Backdoor

2016-02-01
2016-28-0058
Inside cabin of a passenger car, low frequency booming noise still presents a major hurdle for NVH engineers to fine tune a vehicle. Low frequency booming noise is presently taken care with addition of mass damper and large reinforcements. These conventional countermeasures add weight to the vehicle as well as increase the overall production cost. The study presented in this paper proposes a countermeasure model that not only reduces the booming noise but also avoids any weight and cost addition. It has been focused for low frequency booming noise around 30 ∼ 40 Hz. Within the range mentioned, one of the major reasons for booming noise in hatchback models is the bending resonance of backdoor. By modifying the mode of the backdoor in such a manner that it cancels the effect of bending on the vehicle acoustic cavity, improvement can be achieved in terms of sound pressure level at the driver’s right ear location (DREL).
Technical Paper

Investigation of Relation between Sub System Level (Quasi-Static) Side Door Intrusion to Side Collision Test

2015-01-14
2015-26-0171
With the change in the perspective of the Customers towards safer vehicles, most of the Vehicle manufacturers in India are making their vehicles Crash compliant. According to the accidental data collection, Side crashes are second leading cause of death after Frontal crash. Currently sub system level tests are done for evaluating the side impact safety performance of the vehicle. One of such sub system level test is Quasi-static side door intrusion Test. The primary purpose of this testing is to measure the Force-deflection characteristics by intrusion of the impactor into the vehicle. These characteristics are controlled by various door components like door beam, latch & striker, hinge etc. This article studies the relation between Side door intrusion and Side collision, effect of above mentioned components on this relation. A theoretical study is done to study this relationship and it is substantiated with experimental data.
Technical Paper

Methodology to Measure BIW Torsional Stiffness and Study to Identify and Optimize Critical Panels

2015-01-14
2015-26-0224
BIW (Body-in White) is a type of vehicle structure formed by spot welding of different sheet metal components. The BIW structure should be designed to support the maximum load potential under various performance conditions. Thus the structure should have good strength as well as stiffness. Torsion Stiffness of BIW is the amount of torque required to cause a unit degree of twist. It is often considered as a benchmark of its structural competence due to its effect on various parameters like ride, handling, lateral load distribution and NVH performance of vehicle. The paper aims to design and develop a test methodology and test fixtures for measuring the BIW torsion stiffness with repeatability of test results and also have an (R2>0.99) for the measured values in the test.
Technical Paper

Passenger Car Water Wading Evaluation Using CFD Simulation

2016-02-01
2016-28-0072
Water Wading refers to the situation where a car is moving through relatively deep water at low speed. The challenges of an automotive Original Equipment Manufacturer (OEM) is to integrate the functional parts like bumper, bumper grille, engine undercover, intake system etc., to enhance the vehicle quality and performance. One of the challenges in vehicle front end and engine room design is to prevent water entry into the air intake system during wading. If significant amount of water enter the air intake, some of the water could subsequently enter the engine cylinder, which would damage the critical components within the engine beyond repair. In general practice wading tests have been carried out during proto stage of vehicle development program to ensure vehicle performance. However a Computational Fluid Dynamics (CFD) method for carrying out water wading calculations early during the development phase offers reduction in development cost and time for a new vehicle.
Technical Paper

Study on Effect of Ground Clearance on Performance of Aerodynamic Drag Reduction Devices for Passenger Vehicle Using CFD Simulations

2015-01-14
2015-26-0197
Reducing the carbon footprint by meeting stringent emission regulations and improving the fuel efficiency has become an essential feature in 21st century product design cycle for automobiles. Aerodynamic drag affects the fuel efficiency of the vehicle considerably. Various drag reduction devices such as air dam, rim cover, spoiler and undercover etc. are added in order to reduce the drag. This paper aims at understanding the effect of ground clearance on the performance of various aerodynamic drag reduction devices like - air-dam, spoiler, wheel cover and their combinations for hatchback vehicle using Computational Fluid Dynamics (CFD). CFD has been extensively used for exploring the various design configurations and has helped in selecting the optimized aero-parts configuration based on aerodynamic performance at concept stage which has ultimately reduced the vehicle drag coefficient by 10%.
X