Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A More Completely Defined CELSS

1994-06-01
941292
A CELSS has been defined based on current or near-term technology. The CELSS was sized to support the metabolic load of four people on the Moon for ten years. A metabolic load of 14 MJ/person/day is assumed, including an average of 2.6 hr of EVA/person/day. Close to 100% closure of water, and oxygen, and 85% closure of the food loop is assumed. With 15% of the calories supplied from Earth, this should provide adequate dietary variety for the crew along with vitamin and mineral requirements. Other supply and waste removal requirements are addressed. The basic shell used is a Space Station Freedom 7.3 m (24 ft) module. This is assumed to be buried in regolith to provide protection from radiation, meteoroids, and thermal extremes. A solar dynamic power system is assumed, with a design life of 10 years delivering power at 368 kWh/kg. Initial estimates of size are that 73 m2 of plant growth area are required, giving a plant growth volume of about 73 m3.
Technical Paper

Current Riveting/Fastening Methodology and Future Assembly Equipment Philosophy

1996-10-01
961866
This paper is focusing on considerations pertaining to riveting/fastening systems and assembly methodology currently in use for large aircraft fuselage structures. Discussion of process principles on which current systems are based is addressing distribution of rivets along the aircraft structure, riveting/fastening systems and equipment flexibility. An attempt was made to predict the most probable future equipment development trends based on the need for more efficiency in all aircraft structural assembly and in high level and final assembly areas.
Technical Paper

Initial Identification of Aircraft Tire Wear

1995-05-01
951394
Tactical aircraft have tire lives as low as 3-5 landings per tire causing excessive support costs. The goal of the Improved Tire Life (ITL) program was to begin developing technology to double aircraft tire life, particularly for tactical aircraft. ITL examined not only the tire, but also aircraft/landing gear design, aircraft operations, and the operational environment. ITL had three main thrusts which were successfully accomplished: 1) development of an analytical tire wear model, 2) initiation of technology development to increase tire life, and 3) exploration of new and unique testing methods for tire wear. This paper reports the work performed and the results of the USAF sponsored ITL program.
Technical Paper

Laser Positioning System for Advanced Composites Lay-Up, Delta III Payload Fairing

1997-06-01
972198
The McDonnell Douglas Delta family of launch vehicles, in its more than 30-year history, has proven to be the most reliable spacecraft deployment platform for both the US government and the private sector. This success is due to the continuous and focused application of advanced, affordable engineering and manufacturing technologies in all stages of the design, fabrication, assembly, quality assurance, and launch. One of the recent technological breakthroughs that has enhanced the Delta's service capabilities is the development and use of large composite structures in critical components. Among these structures is the payload fairing, which acts as a protective shroud for the spacecraft. Traditional composite manufacturing techniques, however, are very labor-intensive and time-consuming.
Technical Paper

Space Station Freedom Resource Nodes Internal Thermal Control System

1993-07-01
932148
This paper presents an overview of the design and operation of the internal thermal control system (ITCS) developed for Space Station Freedom by the NASA-Johnson Space Center and McDonnell Douglas Aerospace to provide cooling for the resource nodes, airlock, and pressurized logistics modules. The ITCS collects, transports, and rejects waste heat from these modules by a dual-loop, single-phase water cooling system. ITCS performance, cooling, and flow rate requirements are presented. An ITCS fluid schematic is shown and an overview of the current baseline system design and its operation is presented. Assembly sequence of the ITCS is explained as its configuration develops from Man Tended Capability (MTC), for which node 2 alone is cooled, to Permanently Manned Capability (PMC) where the airlock, a pressurized logistics module, and node 1 are cooled, in addition to node 2.
X