Refine Your Search

Topic

Search Results

Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Technical Paper

Analysis of Performance Results from FutureTruck 2001

2002-03-04
2002-01-1209
The 2001 FutureTruck competition involved 15 universities from across North America that were invited to apply a wide range of advanced technologies to improve energy efficiency and reduce greenhouse gas impact while producing near-zero regulated exhaust emissions in a 2000 Chevrolet Suburban. The modified vehicles designated as FutureTrucks demonstrated improvements in greenhouse gas emissions, tailpipe emissions, and over-the-road fuel economy compared with the stock vehicle on which they were based. The technologies represented in the vehicles included ICE-engines and fuel cell hybrid electric vehicle propulsion systems, a range of conventional and alternative fuels, advanced exhaust emissions controls, and light weighting technologies.
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Technical Paper

Autothermal Reforming Catalyst Development for Fuel Cell Applications

2002-06-03
2002-01-1884
Süd-Chemie Inc. is producing and supplying an autothermal reforming (ATR) catalyst that was developed by Argonne National Laboratory (ANL) for reforming hydrocarbon fuels to generate H2 for automotive fuel cell systems. The catalyst is derived from solid oxide fuel cell technology, where a transition metal is supported on an oxide-ion-conducting substrate, such as ceria or zirconia, that is doped with an un-reducible oxide, such as gadolinium or samarium, to improve its oxide ion conductivity and to increase the number of surface oxygen ion vacancies. The catalyst has been shown to produce an H2-rich gas (reformate) from a wide variety of hydrocarbon fuels, including methane, natural gas, and commercial-grade gasolines and diesels with high selectivity. Platinum was the transition metal used in the first generation of the ANL catalyst.
Technical Paper

Breaking Down Technology Barriers for Advanced Vehicles: The Graduate Automotive Technology Education (GATE) Program

2000-04-02
2000-01-1595
The U.S. Department of Energy (DOE) Office of Advanced Automotive Technologies (OAAT), in partnership with industry, is developing transportation technologies that will improve the energy efficiency of our transportation system. Most OAAT programs are focused exclusively on technology development. However, the twin goals of developing innovative technologies and transferring them to industry led OAAT to realize the growing need for people trained in non-traditional, emerging technologies. The Graduate Automotive Technology Education (GATE) program combines graduate-level education with technology development and transfer by training a new generation of automotive engineers in critical multi-disciplinary technologies, by fostering cooperative research in those technologies, and by transferring those technologies directly to industrial organizations.
Technical Paper

Comparing Apples to Apples: Well-to-Wheel Analysis of Current ICE and Fuel Cell Vehicle Technologies

2004-03-08
2004-01-1015
Because of their high efficiency and low emissions, fuel-cell vehicles are undergoing extensive research and development. When considering the introduction of advanced vehicles, a complete well-to-wheel evaluation must be performed to determine the potential impact of a technology on carbon dioxide and Green House Gases (GHGs) emissions. Several modeling tools developed by Argonne National Laboratory (ANL) were used to evaluate the impact of advanced powertrain configurations. The Powertrain System Analysis Toolkit (PSAT) transient vehicle simulation software was used with a variety of fuel cell system models derived from the General Computational Toolkit (GCtool) for pump-to-wheel (PTW) analysis, and GREET (Green house gases, Regulated Emissions and Energy use in Transportation) was used for well-to-pump (WTP) analysis. This paper compares advanced propulsion technologies on a well-to-wheel energy basis by using current technology for conventional, hybrid and fuel cell technologies.
Journal Article

Design of an On-Road PHEV Fuel Economy Testing Methodology with Built-In Utility Factor Distance Weighting

2012-04-16
2012-01-1194
As vehicle technology progresses to new levels of sophistication, so too, vehicle test methods must evolve. This is true for analytical testing in a laboratory and for on-road vehicle testing. Every year since 1993, the U.S. Department of Energy (DOE) and original equipment manufacturer (OEM) sponsors have organized a series of competitions featuring advanced hybrid electric vehicle (HEV) technology to develop and promote DOE goals in fuel savings and alternative fuel usage. The competition has evolved over many years and has included many alternative fuels feeding the prime mover (including hydrogen fuel cells). EcoCAR turned its focus to plug-in hybrid electric vehicles (PHEVs) and it was quickly realized that to keep using on-road testing methods to evaluate fuel and electricity consumption, a new method needed to be developed that would properly weight depleting operation with the sustaining operation, using the established Utility Factor (UF) method.
Technical Paper

Efficiency and Emissions Potential of Hydrogen Internal Combustion Engine Vehicles

2011-01-19
2011-26-0003
This paper reviews and summarizes recent developments in hydrogen (H2) powered engine and vehicle research. Following an overview of mixture formation strategies, general trade-offs when operating engines on hydrogen are analyzed and highlights regarding accomplishments in efficiency improvement and emissions reduction are presented. These include estimates of efficiency potential of direct-injection hydrogen engines based on single-cylinder research engine data, fuel economy and emissions results of hydrogen powered passenger cars and pickup trucks as well as the impact and potential of hydrogen/methane blended operation.
Technical Paper

Efficiency-Optimized Operating Strategy of a Supercharged Hydrogen-Powered Four-Cylinder Engine for Hybrid Environments

2007-07-23
2007-01-2046
As an energy carrier, hydrogen has the potential to deliver clean and renewable power for transportation. When powered by hydrogen, internal combustion engine technology may offer an attractive alternative to enable the transition to a hydrogen economy. Port-injected hydrogen engines generate extremely low emissions and offer high engine efficiencies if operated in a lean combustion strategy. This paper presents experimental data for different constant air/fuel ratio engine combustion strategies and introduces variable air/fuel ratio strategies for engine control. The paper also discusses the shift strategy to optimize fuel economy and contrasts the different engine control strategies in the conventional vehicle environment. The different strategies are evaluated on the urban driving cycle, then engine behaviors are explained and fuel economy is estimated. Finally, the paper projects the potential of hybridization and discusses trends in powertrain cycle efficiencies.
Technical Paper

Energy Storage Requirements for Fuel Cell Vehicles

2004-03-08
2004-01-1302
Because of their high efficiency and low emissions, fuel-cell vehicles are undergoing extensive research and development. As the entire powertrain system needs to be optimized, the requirements of each component to achieve FreedomCAR goals need to be determined. With the collaboration of FreedomCAR fuel cell, energy storage, and vehicle Technical Teams, Argonne National Laboratory (ANL) used several modeling tools to define the energy storage requirements for fuel cell vehicles. For example, the Powertrain System Analysis Toolkit (PSAT), which is a transient vehicle simulation software, was used with a transient fuel cell model derived from the General Computational Toolkit (GCtool). This paper describes the impact of degree of hybridization, control strategy, and energy storage technology on energy storage requirements for a fuel cell SUV vehicle platform.
Technical Paper

Fuel Economy Sensitivity to Vehicle Mass for Advanced Vehicle Powertrains

2006-04-03
2006-01-0665
In 2002, the U.S. Department of Energy (DOE) launched FreedomCAR, which is a partnership with automakers to advance high-technology research needed to produce practical, affordable advanced vehicles that have the potential to significantly improve fuel economy in the near-term. Advanced materials (including metals, polymers, composites, and intermetallic compounds) can play an important role in improving the efficiency of transportation vehicles. Weight reduction is one of the most practical ways of increasing vehicle fuel economy while reducing exhaust emissions. In this paper, we evaluate the impact of vehicle mass reduction for several vehicle platforms and advanced powertrain technologies, including Internal Combustion Engine (ICE) Hybrid Electric Vehicles (HEVs) and fuel cell HEVs, in comparison with conventional vehicles. We also explain the main factors influencing the fuel economy sensitivity.
Technical Paper

Impact of Technology on Electric Drive Fuel Consumption and Cost

2012-04-16
2012-01-1011
In support of the U.S Department of Energy's Vehicle Technologies Program, numerous vehicle technology combinations have been simulated using Autonomie. Argonne National Laboratory (Argonne) designed and wrote the Autonomie modeling software to serve as a single tool that could be used to meet the requirements of automotive engineering throughout the development process, from modeling to control, offering the ability to quickly compare the performance and fuel efficiency of numerous powertrain configurations. For this study, a multitude of vehicle technology combinations were simulated for many different vehicles classes and configurations, which included conventional, power split hybrid electric vehicle (HEV), power split plug-in hybrid electric vehicle (PHEV), extended-range EV (E-REV)-capability PHEV, series fuel cell, and battery electric vehicle.
Technical Paper

Impacts of Combining Hydrogen ICE with Fuel Cell System Using PSAT

2006-04-03
2006-01-0037
Because of their high efficiency and low emission potential, fuel cell vehicles are undergoing extensive research and development. However, several major barriers have to be overcome to enable a hydrogen economy. Because fuel cell vehicles remain expensive, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, the automotive manufacturers developed a hydrogen-fueled Internal Combustion Engine (ICE) as an intermediate step. Despite being cheaper, the hydrogen-fueled ICE offers a lower driving range because of its lower efficiency. The current study evaluates the impact of combining a hydrogen-fueled ICE with a fuel cell to maximize fuel economy while minimizing the cost and amount of onboard fuel needed to maintain an acceptable driving range.
Technical Paper

Integrated Fuel Processor Development

2002-06-03
2002-01-1886
The Department of Energyís Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc.
Technical Paper

Investigation of Injection Parameters in a Hydrogen DI Engine Using an Endoscopic Access to the Combustion Chamber

2007-04-16
2007-01-1464
In order to achieve the targets for hydrogen engines set by the U.S. Department of Energy (DOE) - a brake thermal efficiency of 45% and nitrogen oxide (NOx) emissions below 0.07 g/mi - while maintaining the same power density as comparable gasoline engines, researchers need to investigate advanced mixture formation and combustion strategies for hydrogen internal combustion engines. Hydrogen direct injection is a very promising approach to meeting DOE targets; however, there are several challenges to be overcome in order to establish this technology as a viable pathway toward a sustainable hydrogen infrastructure. This paper describes the use of endoscopic imaging as a diagnostic tool that allows further insight into the processes that occur during hydrogen combustion. It also addresses recent progress in the development of advanced direct-injected hydrogen internal combustion engine concepts.
Technical Paper

Low-Friction Coatings for Air Bearings in Fuel Cell Air Compressors

2000-04-02
2000-01-1536
In an effort to reduce fuel consumption and emissions, hybrid vehicles incorporating fuel cell systems are being developed by automotive manufacturers, their suppliers, federal agencies (specifically, the U.S. Department of Energy) and national laboratories. The fuel cell system will require an air management subsystem that includes a compressor/expander. Certain components in the compressor will require innovative lubrication technology in order to reduce parasitic energy losses and improve their reliability and durability. One such component is the air bearing for air turbocompressors designed and fabricated by Meruit, Inc. Argonne National Laboratory recently developed a carbon-based coating with low friction and wear attributes; this near-frictionless-carbon (NFC) coating is a potential candidate for use in turbocompressor air bearings. We presents here an evaluation of the Argonne coating for air compressor thrust bearings.
Technical Paper

Mixing-Limited Combustion of Alcohol Fuels in a Diesel Engine

2019-04-02
2019-01-0552
Diesel-fueled, heavy-duty engines are critical to global economies, but unfortunately they are currently coupled to the rising price and challenging emissions of Diesel fuel. Public awareness and increasingly stringent emissions standards have made Diesel OEMs consider possible alternatives to Diesel, including electrification, fuel cells, and spark ignition. While these technologies will likely find success in certain market segments, there are still many applications that will continue to require the performance and liquid-fueled simplicity of Diesel-style engines. Three-way catalysis represents a possible low-cost and highly-effective pathway to reducing Diesel emissions, but that aftertreatment system has typically been incompatible with Diesel operation due to the prohibitively high levels of soot formation at the required stoichiometric fuel-air ratios. This paper explores a possible method of integrating three-way catalysis with Diesel-style engine operation.
Journal Article

Mixture Formation in Direct Injection Hydrogen Engines: CFD and Optical Analysis of Single- and Multi-Hole Nozzles

2011-09-11
2011-24-0096
This paper describes the validation of a CFD code for mixture preparation in a direct injection hydrogen-fueled engine. The cylinder geometry is typical of passenger-car sized spark-ignited engines, with a centrally located injector. A single-hole and a 13-hole nozzle are used at about 100 bar and 25 bar injection pressure. Numerical results from the commercial code Fluent (v6.3.35) are compared to measurements in an optically accessible engine. Quantitative planar laser-induced fluorescence provides phase-locked images of the fuel mole-fraction, while single-cycle visualization of the early jet penetration is achieved by a high-speed schlieren technique. The characteristics of the computational grids are discussed, especially for the near-nozzle region, where the jets are under-expanded. Simulation of injection from the single-hole nozzle yields good agreement between numerical and optical results in terms of jet penetration and overall evolution.
Journal Article

Modeling and Experiments on Mixture Formation in a Hydrogen Direct-Injection Research Engine

2009-09-13
2009-24-0083
Direct injection offers a large number of degrees of freedom, as it strongly influences the mixture stratification process. Experiments on a single cylinder research engine fuelled by H2, carried out at Argonne National Laboratory, showed the influence of injection parameters (timing and geometry) on engine efficiency and combustion stability. At low load, when a late injection strategy was performed, an unstable engine behavior was detected varying the injection direction. In order to optimize the mixture stratification process in DI H2 engines, it is important to understand the physics underlying the experimental results. A spatially resolved representation of the in-cylinder processes is a useful tool to properly set the injection parameters. Also, the knowledge of the pre-injection flow field is of added value in optimizing the injection process.
Technical Paper

Modeling the Performance of Lithium-Ion Batteries for Fuel Cell Vehicles

2003-06-23
2003-01-2285
This study involves the battery requirements for a fuel cell-powered hybrid electric vehicle. The performances of the vehicle [a 3200-lb (1455-kg) sedan], the fuel cell, and the battery were evaluated in a vehicle simulation. Most of the attention was given to the design and performance of the battery, a lithium-ion, manganese spinel-graphite system of 75-kW power to be used with a 50-kW fuel cell. The total power performance of the system was excellent at the full operating temperatures of the fuel cell and battery. The battery cycling duty is very moderate, as regenerative braking for the Federal Urban Driving Schedule and the Highway Fuel Economy Test cycles can do all charging of the battery. Cold start-up at 20°C is straightforward, with full power available immediately.
X