Refine Your Search



Search Results

Technical Paper

A Comprehensive Simulation Approach to Irregular Combustion

The combustion of highly boosted gasoline engines is limited by knocking combustion and pre-ignition. Therefore, a comprehensive modelling approach consisting of cycle-to-cycle simulation, reactor modelling with detailed chemistry and CFD-simulation was used to predict the knock initiation and to identify the source of pre-ignition. A 4-cylinder DISI test engine was set up and operated at low engine speeds and high boost pressures in order to verify the accuracy of the numerical approach. The investigations showed that there is a correlation between the knocking combustion and the very first combustion phase. The onset of knock was simulated with a stochastic reactor model and detailed chemistry. In parallel, measurements with an optical spark plug were carried out in order to identify the location of knock onset. The simulation results were in good agreement with the measurements. Deposits and oil/fuel-droplets are possible triggers of pre-ignition.
Technical Paper

A Computer Cooling System Study of a Diesel Powered Truck for Control of Transient Coolant, Oil and Cab Temperatures

A Vehicle-Engine-Cooling (VEC) system computer simulation model was used to study the transient performance of control devices and their temperature settings on oil, coolant and cab temperatures. The truck used in the study was an International Harvester COF-9670 cab over chassis heavy-duty vehicle equipped with a standard cab heater, a Cummins NTC-350 diesel engine with a McCord radiator and standard cooling system components and aftercooler. Input data from several portions of a Columbus to Bloomington, Indiana route were used from the Vehicle Mission Simulation (VMS) program to determine engine and vehicle operating conditions for the VEC system computer simulation model. The control devices investigated were the standard thermostat, the Kysor fan-clutch and shutter system. The effect of shutterstat location on shutter performance along with thermostat, shutter and fan activation temperature settings were investigated for ambient temperatures of 32, 85 and 100°F.
Technical Paper

A Modeling Study of the Exhaust Flow Rate and Temperature Effects on the Particulate Matter Thermal Oxidation Occurring during the Active Regeneration of a Diesel Particulate Filter

Numerical models of aftertreatment devices are increasingly becoming indispensable tools in the development of aftertreatment systems that enable modern diesel engines to comply with exhaust emissions regulations while minimizing the cost and development time involved. Such a numerical model was developed at Michigan Technological University (MTU) [1] and demonstrated to be able to simulate the experimental data [2] in predicting the characteristic pressure drop and PM mass retained during passive oxidation [3] and active regeneration [4] of a catalyzed diesel particulate filter (CPF) on a Cummins ISL engine. One of the critical aspects of a calibrated numerical model is its usability - in other words, how useful is the model in predicting the pressure drop and the PM mass retained in another particulate filter on a different engine without the need for extensive recalibration.
Technical Paper

Advances in Quantitative Analytical Ferrography and the Evaluation of a High Gradient Magnetic Separator for the Study of Diesel Engine Wear

Several sources of variation in quantitative analytical ferrography are investigated. A standard ferrography analysis procedure is developed. Normalization of ferrographic data to account for the amount of oil used to make the ferrograms is discussed. Procedures to minimize the errors involved with calculating three quantitative ferrography parameters: the area covered by the large particles, AL (%/ml of oil), the area covered by the small particles, AS (%/ml of oil) and Area Under the Curve, AUC, (%-mm/ml of oil) are outlined. Ferrographic data are presented which show that the volume and dilution ratio of the oil sample being analyzed have a major effect on the accuracy of the analysis. Several variables which influence the area covered readings of the particle deposit on a ferrogram are discussed. The accuracy of quantitative analytical ferrography is assessed.
Technical Paper

Air-to-Fuel Ratio Calculation Methods for Oxygenated Fuels in Two-Stroke Engines

In 1990, Roy Douglas developed an analytical method to calculate the global air-to-fuel ratio of a two-stroke engine from exhaust gas emissions. While this method has considerable application to two-stroke engines, it does not permit the calculation of air-to-fuel ratios for oxygenated fuels. This study proposed modifications to the Roy Douglas method such that it can be applied to oxygenated fuels. The ISO #16183 standard, the modified Spindt method, and the Brettschneider method were used to evaluate the modifications to the Roy Douglas method. In addition, a trapped air-to-fuel ratio, appropriate for two-stroke engines, was also modified to incorporate oxygenated fuels. To validate the modified calculation method, tests were performed using a two-stroke carbureted and two-stroke direct injected marine outboard engine over a five-mode marine test cycle running indolene and low level blends of ethanol and iso-butanol fuels.
Technical Paper

An Architecture for Electronic Throttle Control Systems

This paper presents an architecture for monitoring and controlling an electronic throttle control system. The architecture contains two processors, the MAIN and the MCP. The MAIN is responsible for calculating the desired throttle position and the MCP for positioning the throttle using feedback control. The two processors measure all pedal and throttle sensors redundantly and continuously monitor the state-of-health of the other processor. Depending on the fault(s) detected, actuator default position, limited throttle authority, forced idle, Bowden cable mode or engine shutdown remedial action may be taken.
Technical Paper

An In Situ Determination of the Thermal Properties of Gombustion-Chamber Deposits

A technique for making a radiometric measurement of the deposit surface temperature in a methane-fired engine was developed. The wavelength region between 3.5 and 4.1 μm was investigated. It was determined that while the combustion gases were relatively transparent, the surface temperature measurements would contain some gas radiation. A method of averaging the measurements of many cycles and correcting these data for the gas radiation was developed. Time-averaged surface temperature was used in a steady-state heat transfer analysis to determine deposit thermal conductivity. Deposit thermal diffusivity was determined from a transient experiment in which the engine’s ignition system was turned off and the cooling response of the deposit and wall were measured.
Journal Article

An Investigation of Radiation Heat Transfer in a Light-Duty Diesel Engine

In the last two decades engine research has been mainly focused on reducing pollutant emissions. This fact together with growing awareness about the impacts of climate change are leading to an increase in the importance of thermal efficiency over other criteria in the design of internal combustion engines (ICE). In this framework, the heat transfer to the combustion chamber walls can be considered as one of the main sources of indicated efficiency diminution. In particular, in modern direct-injection diesel engines, the radiation emission from soot particles can constitute a significant component of the efficiency losses. Thus, the main of objective of the current research was to evaluate the amount of energy lost to soot radiation relative to the input fuel chemical energy during the combustion event under several representative engine loads and speeds. Moreover, the current research characterized the impact of different engine operating conditions on radiation heat transfer.
Technical Paper

Characterizing the Effect of Automotive Torque Converter Design Parameters on the Onset of Cavitation at Stall

This paper details a study of the effects of multiple torque converter design and operating point parameters on the resistance of the converter to cavitation during vehicle launch. The onset of cavitation is determined by an identifiable change in the noise radiating from the converter during operation, when the collapse of cavitation bubbles becomes detectable by nearfield acoustical measurement instrumentation. An automated torque converter dynamometer test cell was developed to perform these studies, and special converter test fixturing is utilized to isolate the test unit from outside disturbances. A standard speed sweep test schedule is utilized, and an analytical technique for identifying the onset of cavitation from acoustical measurement is derived. Effects of torque converter diameter, torus dimensions, and pump and stator blade designs are determined.
Journal Article

Characterizing the Onset of Manual Transmission Gear Rattle Part I: Experimental Results

The objective of this investigation is to characterize the ability of loose gears to resist rattle in a manual transmission driven by an internal combustion engine. A hemi-anechoic transmission dynamometer test cell with the capability to produce torsional oscillations is utilized to initiate gear rattle in a front wheel drive (FWD) manual transmission, for a matrix of operating loads and selected gear states. A signal processing technique is derived herein to identify onset of gear rattle resulting from a standardized set of measurements. Gear rattle was identified by a distinct change in noise and vibration measures, and correlated to gear oscillations by a computed quantity referred to as percent deviation in normalized gear speed. An angular acceleration rattle threshold is defined based upon loose gear inertia and drag torque. The effects of mean speed, mean and dynamic torque, and gear state on the occurrence of loose gear rattle are reported.
Journal Article

Characterizing the Onset of Manual Transmission Gear Rattle Part II: Analytical Results

Lumped parameter analysis is a simple and commonly used technique for performing torsional analysis or design parameter sensitivity studies on automotive powertrains and drivelines. The purpose of this paper is to demonstrate the application of lumped parameter analysis to manual transmission gear rattle. A representative model is developed for a FWD manual transmission, as operated in a dynamometer test cell. Once validated by experimental data, the model is used to investigate the influence on gear rattle of parameters not readily modified or controlled during hardware evaluations. A sinusoidal torque is used to excite the system, and a signal processing technique similar to that derived in Part I of this two part paper is used to identify the inception of gear rattle. Functional relations for torque losses associated with shafts, gears, seals, lubricating oil flow and bearing clearances as a function of basic design parameters are included within the model.
Technical Paper

Combustion Robustness Characterization of Gasoline and E85 for Startability in a Direct Injection Spark-Ignition Engine

An experimental study and analysis was conducted to investigate cold start robustness of an ethanol flex-fuel spark ignition (SI) direct injection (DI) engine. Cold starting with ethanol fuel blends is a known challenge due to the fuel characteristics. The program was performed to investigate strategies to reduce the enrichment requirements for the first firing cycle during a cold start. In this study a single-cylinder SIDI research engine was used to investigate gasoline and E85 fuels which were tested with three piston configurations (CR11F, CR11B, CR15.5B - which includes changes in compression ratio and piston geometry), at three intake cam positions (95, 110, 125 °aTDC), and two fuel pressures (low: 0.4 MPa and high: 3.0 MPa) at 25°C±1°C engine and air temperature, for the first cycle of an engine start.
Technical Paper

Development and Evaluation of a Diesel Powered Truck Cooling System Computer Simulation Program

A computer simulation program was developed to simulate the thermal responses of an on-highway, heavy duty diesel powered truck in transient operation for evaluation of cooling system performance. Mathematical models of the engine, heat exchangers, lubricating oil system, thermal control sensors (thermostat and shutterstat), auxiliary components, and the cab were formulated and calibrated to laboratory experimental data. The component models were assembled into the vehicle engine cooling system model and used to predict air-to-boil temperatures. The model has the capability to predict real time coolant, oil and cab temperatures using vehicle simulation input data over various routes.
Technical Paper

Development of an Improved Residuals Estimation Model for Dual Independent Cam Phasing Spark-Ignition Engines

Estimating internal residual during engine operation is essential to robust control during startup, steady state, and transient operation. Internal residual has a significant effect on combustion flame propagation, combustion stability and emissions. Accurate residual estimate also provides a better foundation for optimizing open loop fuel control during startup, while providing a basis for reducing emissions during closed loop control. In this paper we develop an improved model to estimate residual gas fraction by means of isolation and characterization of the physical processes in the gas exchange. Examining existing residuals model as the base, we address their deficiencies making changes to appropriate terms to the model. Existing models do not work well under wide angle dual independent cam phasing. The improved residual estimation model is not limited by the initial data set used for its calibration and does not need cylinder pressure data.
Journal Article

Driving Pattern Recognition for Adaptive Hybrid Vehicle Control

The vehicle driving cycles affect the performance of a hybrid vehicle control strategy, as a result, the overall performance of the vehicle, such as fuel consumption and emission. By identifying the driving cycles of a vehicle, the control system is able to dynamically change the control strategy (or parameters) to the best one to adapt to the changes of vehicle driving patterns. This paper studies the supervised driving cycle recognition using pattern recognition approach. With pattern recognition method, a driving cycle is represented by feature vectors that are formed by a set of parameters to which the driving cycle is sensitive. The on-line driving pattern recognition is achieved by calculating the feature vectors and classifying these feature vectors to one of the driving patterns in the reference database. To establish reference driving cycle database, the representative feature vectors for four federal driving cycles are generated using feature extraction method.

Dynamic Analysis and Control System Design of Automatic Transmissions

While the basic working principle and the mechanical construction of automatic transmissions has not changed significantly, increased requirements for performance, fuel economy, and drivability, as well as the increasing number of gears has made it more challenging to design the systems that control modern automatic transmissions. New types of transmissions—continuously variable transmissions (CVT), dual clutch transmissions (DCT), and hybrid powertrains—have presented added challenges. Gear shifting in today’s automatic transmissions is a dynamic process that involves synchronized torque transfer from one clutch to another, smooth engine speed change, engine torque management, and minimization of output torque disturbance. Dynamic analysis helps to understand gear shifting mechanics and supports creation of the best design for gear shift control systems in passenger cars, trucks, buses, and commercial vehicles.
Technical Paper

Dynamic Analysis of a 3D Finger Follower Valve Train System Coupled with Flexible Camshafts

A 3D dynamic model has been developed to investigate the dynamic response of a finger-follower cam system by considering the interaction between valve train and camshaft. The torsional moments being different for each cam cause the torsional vibrations of the camshaft. The resulting speed fluctuations of the cam affect the dynamics of other valve train components including the ultimate valve motion. To better represent the critical parts of the valve train, special attention was given to the cam and follower and to valve springs. The cam and follower are treated as a force contact relation so parts can separate and impact again. The valve springs are now treated as flexible bodies and important mass effects and coil contact events are captured during the simulation. The mass effects are associated with spring surge that occurs at high speed. Coil contact occurs when the individual coil in the spring collides. One bank of a V6 engine with overhead twin cams is modeled in this study.
Technical Paper

Effects of Ethanol Additives on Diesel Particulate and NOx Emissions

Particulate and nitrogen oxide emissions from a 1.9-liter Volkswagen diesel engine were measured for three different fuels: neat diesel fuel, a blend of diesel fuel with 10% ethanol, and a blend of diesel fuel with 15% ethanol. Engine-out emissions were measured on an engine dynamometer for five different speeds and five different torques using the standard engine-control unit. Results show that particulate emissions can be significantly reduced over approximately two-thirds of the engine map by using a diesel-ethanol blend. Nitrogen oxide emissions can also be significantly reduced over a smaller portion of the engine map by using a diesel-ethanol blend. Moreover, there is an overlap between the regions where particulate emissions can be reduced by up to 75% and nitrogen oxide emissions are reduced by up to 84% compared with neat diesel fuel.
Technical Paper

Efficiency and Emissions Mapping of a Light Duty Diesel - Natural Gas Engine Operating in Conventional Diesel and RCCI Modes

Reactivity Controlled Compression Ignition (RCCI) is a promising dual-fuel Low Temperature Combustion (LTC) mode with significant potential for reducing NOx and particulate emissions while improving or maintaining thermal efficiency compared to Conventional Diesel Combustion (CDC) engines. The large reactivity difference between diesel and Natural Gas (NG) fuels provides a strong control variable for phasing and shaping combustion heat release. In this work, the Brake Thermal Efficiencies (BTE), emissions and combustion characteristics of a light duty 1.9L, four-cylinder diesel engine operating in single fuel diesel mode and in Diesel-NG RCCI mode are investigated and compared. The engine was operated at speeds of 1300 to 2500 RPM and loads of 1 to 7 bar BMEP. Operation was limited to 10 bar/deg Maximum Pressure Rise Rate (MPRR) and 6% Coefficient of Variation (COV) of IMEP.
Technical Paper

Elemental Composition Determination and Stoichiometric Air-Fuel Ratios of Gasoline Containing Ethanol

Carbon, hydrogen and oxygen are major elements in modern fuels. Varying combinations of these elements in motor fuel alter the stoichiometric air-fuel ratio (A/F). Stoichiometric A/F ratio is an important parameter in engine calibration affecting vehicle performance, emissions and fuel economy. With increasing use of ethanol in automotive fuels in recent years, since it can be made from renewable feedstocks, oxygen contents in fuel are increasing. Oxygen contents can be around 1.7 mass % in European E5 gasoline or 3.5 mass % in U.S. E10 gasoline and up to 29 mass % in E85 fuel. The increase in oxygen content of fuel has resulted in changes in other physical and chemical properties due to the differences between ethanol and hydrocarbons refined from fossil oil. A previous paper (SAE 2010-01-1517) discussed the change in energy content of automotive fuel and the estimation of net heating values from common fuel properties.