Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Hybrid Pyrolysis / Oxidation System for Solid Waste Resource Recovery

2004-07-19
2004-01-2380
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid, liquid, and/or gaseous products. The main disadvantages of pyrolysis processing are: (1) the product stream is more complex than for many of the alternative treatments; (2) the product gases cannot be vented directly into the cabin without further treatment because of the high CO concentrations. One possible solution is to combine a pyrolysis step with catalytic oxidation (combustion) of the effluent gases. This integration takes advantage of the best features of each process. The advantages of pyrolysis are: insensitivity to feedstock composition, no oxygen consumption, and batch operation. The main advantage of oxidation is the simplicity and consistency of the product stream. In addition, this hybrid process has the potential to result in a significant reduction in Equivalent System Mass (estimated at 10-40%) and system complexity.
Technical Paper

A Pilot Scale System for Low Temperature Solid Waste Oxidation and Recovery of Water

2009-07-12
2009-01-2365
In February 2004 NASA released “The Vision for Space Exploration.” The goals outlined in this document include extending the human presence in the solar system, culminating in the exploration of Mars. A key requirement for this effort is to identify a safe and effective method to process waste. Methods currently under consideration include incineration, microbial oxidation, pyrolysis, drying, and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this work was to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. TDA and NASA Ames Research Center have developed a pilot scale low temperature ozone oxidation system to convert organic waste to CO2 and H2O.
Technical Paper

A Prototype Pyrolysis / Oxidation System for Solid Waste Processing

2005-07-11
2005-01-3083
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid liquid and/or gaseous products. The main disadvantages of pyrolysis processing are: (1) the product stream is more complex than for many of the alternative treatments; (2) the product gases cannot be vented directly into the cabin without further treatment because of the high CO concentrations. One possible solution is to combine a pyrolysis step with catalytic oxidation (combustion) of the effluent gases. This integration takes advantage of the best features of each process, which is insensitivity to product mix, no O2 consumption, and batch processing, in the case of pyrolysis, and simplicity of the product effluent stream in the case of oxidation. In addition, this hybrid process has the potential to result in a significant reduction in Equivalent System Mass (ESM) and system complexity.
Technical Paper

Advanced Development of the Direct Osmotic Concentration System

2008-06-29
2008-01-2145
Direct osmotic concentration (DOC) is an integrated membrane treatment process designed for the reclamation of spacecraft wastewater. The system includes forward osmosis (FO), membrane evaporation, reverse osmosis (RO) and an aqueous phase catalytic oxidation (APCO) post-treatment unit. This document describes progress in the third year of a four year project to advance hardware maturity of this technology to a level appropriate for human rated testing. The current status of construction and testing of the final deliverable is covered and preliminary calculations of equivalent system mass are funished.
Technical Paper

Aerodynamic Drag Reduction of the Underbody of a Class-8 Tractor-Trailer

2006-10-31
2006-01-3532
Experimental measurements of a 1:20-scale tractor-trailer configuration were obtained in the 48- by 32-Inch Subsonic Wind Tunnel at NASA Ames Research Center. The model included significant details of the underbody geometries of both the tractor and trailer. In addition, the tractor included a flow-through grill and a simplified engine block to provide an approximation of the flow through the engine compartment. The experiment was conducted at a Reynolds Number of 430,000 for yaw angles between ±14 deg. The measurements included forces and moments and static surface pressures for various underbody configurations. Simple fairings on the underbodies of the tractor and trailer both yielded a reduction in the wind-averaged drag coefficient of 0.018 (2.7%) when tested separately. A horizontal plate designed to block vertical flow in the tractor-trailer gap provided marginally higher drag reduction (0.021, or 3.2%).
Technical Paper

Aerodynamic Drag of Heavy Vehicles (Class 7-8): Simulation and Benchmarking

2000-06-19
2000-01-2209
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. Experimental validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California (USC). Companion computer simulations are being performed by Sandia National Laboratories (SNL), Lawrence Livermore National Laboratory (LLNL), and California Institute of Technology (Caltech) using state-of-the-art techniques.
Technical Paper

Aerodynamic Tailoring of the Learjet Model 60 Wing

1993-09-01
932534
The wing of the Learjet Model 60 was tailored for improved aerodynamic characteristics using the TRANAIR transonic full-potential CFD code. A root leading edge glove and wing tip fairing were shaped to reduce shock strength, improve cruise drag and extend the buffet limit. The aerodynamic design was validated by wind tunnel test and flight test data.
Technical Paper

Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration

2005-07-11
2005-01-2810
This paper considers system design and technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The ultimate objective is to identify the air and water technologies likely to be used for the vision for space exploration and to suggest alternate technologies that should be developed. The approach is to conduct a preliminary systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then to define the functional architecture, review the current International Space Station (ISS) technologies, and suggest alternate technologies.
Technical Paper

Airport Remote Tower Sensor Systems

2001-09-11
2001-01-2651
Remote Tower Sensor Systems are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA and NOAA. RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to real-time airport conditions and aircraft status.
Technical Paper

An Evaluation of a Prototype Dry Pyrolysis System for Destruction of Solid Wastes

2004-07-19
2004-01-2379
Pyrolysis is a technology that can be used on future space missions to convert wastes to an inert char, water, and gases. The gases can be easily vented overboard on near term missions. For far term missions the gases could be directed to a combustor or recycled. The conversion to char and gases as well as the absence of a need for resupply materials are advantages of pyrolysis. A major disadvantage of pyrolysis is that it can produce tars that are difficult to handle and can cause plugging of the processing hardware. By controlling the heating rate of primary pyrolysis, the secondary (cracking) bed temperature, and residence time, it is possible that tar formation can be minimized for most biomass materials. This paper describes an experimental evaluation of two versions of pyrolysis reactors that were delivered to the NASA Ames Research Center (ARC) as the end products of a Phase II and a Phase III Small Business Innovation Research (SBIR) project.
Technical Paper

Artificial Gravity for Mars Missions: The Different Design and Development Options

2000-07-10
2000-01-2246
One of the major impediments to human Mars missions is the development of appropriate countermeasures for long term physiological response to the micro-gravity environment. A plethora of countermeasure approaches have been advanced from strictly pharmacological measures to large diameter rotating spacecraft that would simulate a 1-g environment (the latter being the most conservative from a human health perspective). The different approaches have significantly different implications not only on the overall system design of a Mars Mission Vehicle (MMV) but on the necessary earth-orbiting platform that would be required to qualify the particular countermeasure system. It is found that these different design options can be conveniently categorized in terms of the order of magnitude of the rotation diameter required (100's, 10's, 1's, 0 meters). From this, the different mass penalties associated with each category can be generally compared.
Technical Paper

Atmosphere Composition Control of Spaceflight Plant Growth Growth Chambers

2000-07-10
2000-01-2232
Spaceflight plant growth chambers require an atmosphere control system to maintain adequate levels of carbon dioxide and oxygen, as well as to limit trace gas components, for optimum or reproducible scientific performance. Recent atmosphere control anomalies of a spaceflight plant chamber, resulting in unstable CO2 control, have been analyzed. An activated carbon filter, designed to absorb trace gas contaminants, has proven detrimental to the atmosphere control system due to its large buffer capacity for CO2. The latest plant chamber redesign addresses the control anomalies and introduces a new approach to atmosphere control (low leakage rate chamber, regenerative control of CO2, O2, and ethylene).
Technical Paper

Aviation Data Integration System

2003-09-08
2003-01-3009
A number of airlines have FOQA programs that analyze archived flight data. Although this analysis process is extremely useful for assessing airline concerns in the areas of aviation safety, operations, training, and maintenance, looking at flight data in isolation does not always provide the context necessary to support a comprehensive analysis. To improve the analysis process, the Aviation Data Integration Project (ADIP) has been developing techniques for integrating flight data with auxiliary sources of relevant aviation data. ADIP has developed an aviation data integration system (ADIS) comprised of a repository and associated integration middleware that provides rapid and secure access to various data sources, including weather data, airport operating condition (ATIS) reports, radar data, runway visual range data, and navigational charts.
Technical Paper

Breakeven Mission Durations for Physicochemical Recycling to Replace Direct Supply Life Support

2007-07-09
2007-01-3221
The least expensive life support for brief human missions is direct supply of all water and oxygen from Earth without any recycling. The currently most advanced human life support system was designed for the International Space Station (ISS) and will use physicochemical systems to recycle water and oxygen. This paper compares physicochemical to direct supply air and water life support systems using Equivalent Mass (EM). EM breakeven dates and EM ratios show that physicochemical systems are more cost effective for longer mission durations.
Technical Paper

Carbon Production in Space from Pyrolysis of Solid Waste

2006-07-17
2006-01-2183
Pyrolysis processing of solid waste in space will inevitably lead to carbon formation as a primary pyrolysis product. The amount of carbon depends on the composition of the starting materials and the pyrolysis conditions (temperature, heating rate, residence time, pressure). Many paper and plastic materials produce almost no carbon residue upon pyrolysis, while most plant biomass materials or human wastes will yield up to 20-40 weight percent on a dry, as-received basis. In cases where carbon production is significant, it can be stored for later use to produce CO2 for plant growth. Alternatively it can be partly gasified by an oxidizing gas (e.g., CO2, H2O, O2) in order to produce activated carbon. Activated carbons have a unique capability of strongly absorbing a great variety of species, ranging from SO2 and NOx, trace organics, mercury, and other heavy metals.
Technical Paper

Characterization of an Integral Thermal Protection and Cryogenic Insulation Material for Advanced Space Transportation Vehicles

2000-07-10
2000-01-2236
NASA’s planned advanced space transportation vehicles will benefit from the use of integral/conformal cryogenic propellant tanks which will reduce the launch weight and lower the earth-to-orbit costs considerably. To implement the novel concept of integral/conformal tanks requires developing an equally novel concept in thermal protection materials. Providing insulation against reentry heating and preserving propellant mass can no longer be considered separate problems to be handled by separate materials. A new family of materials, Superthermal Insulation (STI), has been conceived and investigated by NASA’s Ames Research Center to simultaneously provide both thermal protection and cryogenic insulation in a single, integral material. The present paper presents the results of a series of proof-of-concept tests intended to characterize the thermal performance of STI over a range of operational conditions representative of those which will be encountered in use.
Technical Paper

Compaction and Drying in a Low-Volume, Deployable Commode

2007-07-09
2007-01-3264
We present a device for collecting and storing feces in microgravity that is user-friendly yet suitable for spacecraft in which cabin volume and mass are constrained. On Apollo missions, the commode function was served using disposable plastic bags, which proved time-consuming and caused odor problems. On Skylab, the space shuttle, and the International Space Station, toilets have used airflow beneath a seat to control odors and collect feces. We propose to incorporate airflow into a system of self-compacting, self-drying collection and stowage bags, providing the benefits of previous commodes while minimizing mass and volume. Each collection bag consists of an inner layer of hydrophobic membrane that is permeable to air but not liquid or solid waste, an outer layer of impermeable plastic, and a collapsible spacer separating the inner and outer layers. Filled bags are connected to space vacuum, compacting and drying their contents.
Technical Paper

Comparison of Bioregenerative and Physical/Chemical Life Support Systems

2006-07-17
2006-01-2082
Popular depictions of space exploration as well as government life support research programs have long assumed that future planetary bases would rely on small scale, closed ecological systems with crop plants producing food, water, and oxygen and with bioreactors recycling waste. In actuality, even the most advanced anticipated human life support systems will use physical/ chemical systems to recycle water and oxygen and will depend on food from Earth. This paper compares bioregenerative and physical/chemical life support systems using Equivalent System Mass (ESM), which gauges the relative cost of hardware based on its mass, volume, power, and cooling requirements. Bioregenerative systems are more feasible for longer missions, since they avoid the cost of continually supplying food.
Technical Paper

Considerations in Selection of Solid Waste Management Approaches in Long-Duration Space Missions

2002-07-15
2002-01-2476
Solid Waste Management (SWM) systems of current and previous space flight missions have employed relatively uncomplicated methods of waste collection, storage and return to Earth. NASA's long-term objectives, however, will likely include human-rated missions that are longer in both duration and distance, with little to no opportunity for re-supply. Such missions will likely exert increased demands upon all sub-systems, particularly the SWM system. In order to provide guidance to SWM Research and Technology Development (R&TD) efforts and overall system development, the establishment of appropriate SWM system requirements is necessary. Because future long duration missions are not yet fully defined, thorough mission-specific requirements have not yet been drafted.
Technical Paper

Considerations in the Development of Habitats for the Support of Live Rodents on the International Space Station

2001-07-09
2001-01-2228
The animal habitat under development for the International Space Station (ISS) provides a unique opportunity for the physiological and biological science community to perform controlled experiments in microgravity on rats and mice. This paper discusses the complexities that arise in developing a new animal habitat to be flown aboard the ISS. Such development is incremental and moves forward by employing the past successes, learning from experienced shortcomings, and utilizing the latest technologies. The standard vivarium cage on the ground can be a very simple construction, however the habitat required for rodents in microgravity on the ISS is extremely complex. This discussion presents an overview of the system requirements and focuses on the unique scientific and engineering considerations in the development of the controlled animal habitat parameters. In addition, the challenges to development, specific science, animal welfare, and engineering issues are covered.
X