Refine Your Search

Topic

Author

Search Results

Technical Paper

Additional Large-Drop Ice Accretion Test Results for a Large Scale Swept Wing Section from January 2022

2023-06-15
2023-01-1382
In-flight icing is an important consideration that affects aircraft design, performance, certification and safety. Newer regulations combined with increasing demand to reduce fuel burn, emissions and noise are driving a need for improvements in icing simulation capability. To that end, this paper presents the results of additional ice accretion testing conducted in the NASA Icing Research Tunnel in January 2022 with a large swept wing section typical of a modern commercial transport. The model was based upon a section of the Common Research Model wing at the 64% semispan station with a streamwise chord length of 136 in. The test conditions were developed with an icing scaling analysis to generate similar conditions for a small median volumetric diameter (MVD) = 25 μm cloud and a large MVD = 110 μm cloud. A series of tests were conducted over a range of total temperature from -23.8 °C to -1.4 °C with all other conditions held constant.
Technical Paper

Analysis of Direct Solar Illumination on the Backside of Space Station Solar Cells

1999-08-02
1999-01-2431
The International Space Station (ISS) is a complex spacecraft that will take several years to assemble in orbit. During many of the assembly and maintenance procedures, the space station’s large solar arrays must be locked, which can significantly reduce power generation. To date, power generation analyses have not included power generation from the backside of the solar cells in a desire to produce a conservative analysis. This paper describes the testing of ISS solar cell backside power generation, analytical modeling, and analysis results on an ISS assembly mission.
Technical Paper

Design, Fabrication, and Testing of a 10 kW-hr H2-O2 PEM Fuel Cell Power System for High Altitude Balloon Applications

1999-08-02
1999-01-2588
NASA Glenn Research Center and the Wallops Flight Facility jointly conducted a PEM fuel cell power system development effort for high altitude balloon applications. This was the first phase of NASA efforts to offer higher balloon payload power levels with extended duration mission capabilities for atmospheric science missions. At present, lead-acid batteries typically supply about 100 watts of power to the balloon payload for approximately 8 hours duration. The H2-O2 PEM fuel cell demonstration system developed for this effort can supply at least 200 watts for 48 hours duration. The system was designed and fabricated, then tested in ambient ground environments as well as in a thermal vacuum chamber to simulate operation at 75 kft. altitude. Initially, this program was planned to culminate with a demonstration flight test but no flight has been scheduled, thus far.
Technical Paper

Detection of Smoke from Microgravity Fires

2005-07-11
2005-01-2930
The history and current status of spacecraft smoke detection is discussed including a review of the state of understanding of the effect of gravity on the resultant smoke particle size. The results from a spacecraft experiment (Comparative Soot Diagnostics (CSD)) which measured microgravity smoke particle sizes are presented. Five different materials were tested producing smokes with different properties including solid aerosol smokes and liquid droplets aerosol smokes. The particulate size distribution for the solid particulate smokes increased substantially in microgravity and the results suggested a corresponding increase for the smokes consisting of a liquid aerosol. A planned follow on experiment that will resolve the issues raised by CSD is presented. Early results from this effort have provided the first measurements of the ambient aerosol environment on the ISS (International Space Station) and suggest that the ISS has very low ambient particle levels.
Journal Article

Developing Abrasion Test Standards for Evaluating Lunar Construction Materials

2009-07-12
2009-01-2377
Operational issues encountered by Apollo astronauts relating to lunar dust were catalogued, including material abrasion that resulted in scratches and wear on spacesuit components, ultimately impacting visibility, joint mobility and pressure retention. Standard methods are being developed to measure abrasive wear on candidate construction materials to be used for spacesuits, spacecraft, and robotics. Calibration tests were conducted using a standard diamond stylus scratch tip on the common spacecraft structure aluminum, Al 6061-T6. Custom tips were fabricated from terrestrial counterparts of lunar minerals for scratching Al 6061-T6 and comparing to standard diamond scratches. Considerations are offered for how to apply standards when selecting materials and developing dust mitigation strategies for lunar architecture elements.
Technical Paper

Development of Icing Condition Remote Sensing Systems and their Implications for Future Flight Operations

2003-06-16
2003-01-2096
NASA and the FAA are funding the development of ground-based remote sensing systems specifically designed to detect and quantify the icing environment aloft. The goal of the NASA activity is to develop a relatively low cost stand-alone system that can provide practical icing information to the flight community. The goal of the FAA activity is to develop more advanced systems that can identify supercooled large drop (SLD) as well as general icing conditions and be integrated into the existing weather information infrastructure. Both activities utilize combinations of sensing technologies including radar, radiometry, and lidar, along with Internet-available external information such as numerical weather model output where it is found to be useful. In all cases the measured data of environment parameters will need to be converted into a measure of icing hazard before it will be of value to the flying community.
Technical Paper

Development of the Compact Flash Evaporator System for Exploration

2007-07-09
2007-01-3204
This paper will discuss the status of the Compact Flash Evaporator System (CFES) development at NASA Glenn. Three alternative heat sink technologies are being developed under Thermal Control for Advanced Capabilities within the Exploration Technology Development Program. One of them is CFES, a spray cooling concept related to the current Space Shuttle Orbiter Flash Evaporator System (FES). In the CFES concept, water is sprayed on the outside of a flat plate heat exchanger, through which flows the vehicle's primary vehicle heat transfer fluid. The steam is then exhausted to space in an open-loop system. Design, fabrication and testing of the CFES at NASA's Glenn Research Center will be reported.
Technical Paper

Effects of Solar Array Shadowing on the Power Capability of the Interim Control Module

1999-08-02
1999-01-2432
The Interim Control Module (ICM) is being built by the US Naval Research Laboratory (NRL) for NASA as a propulsion module for the International Space Station (ISS). Originally developed as a spinning spacecraft used to move payloads to their final orbit, for ISS, the ICM will be in a fixed orientation and location for long periods resulting in substantial solar panel shadowing. This paper describes the methods used to determine the incident energy on the ICM solar panels and the power capability of the electric power system (EPS). Applying this methodology has resulted in analyses and assessments used to identify ICM early design changes/options, placement and orientations that enable successful operation of the EPS under a wide variety of anticipated conditions.
Journal Article

Experimental Aerodynamic Simulation of a Scallop Ice Accretion on a Swept Wing

2019-06-10
2019-01-1984
Understanding the aerodynamic impact of swept-wing ice accretions is a crucial component of the design of modern aircraft. Computer-simulation tools are commonly used to approximate ice shapes, so the necessary level of detail or fidelity of those simulated ice shapes must be understood relative to high-fidelity representations of the ice. Previous tests were performed in the NASA Icing Research Tunnel to acquire high-fidelity ice shapes. From this database, full-span artificial ice shapes were designed and manufactured for both an 8.9%-scale and 13.3%-scale semispan wing model of the CRM65 which has been established as the full-scale baseline for this swept-wing project. These models were tested in the Walter H. Beech wind tunnel at Wichita State University and at the ONERA F1 facility, respectively. The data collected in the Wichita St.
Technical Paper

Fire Safety in the Low-Gravity Spacecraft Environment

1999-07-12
1999-01-1937
Research in microgravity (low-gravity) combustion promises innovations and improvements in fire prevention and response for human-crew spacecraft. Findings indicate that material flammability and fire spread in microgravity are significantly affected by atmospheric flow rate, oxygen concentration, and diluent composition. This information can lead to modifications and correlations to standard material-assessment tests for prediction of fire resistance in space. Research on smoke-particle changes in microgravity promises future improvements and increased sensitivity of smoke detectors in spacecraft. Research on fire suppression by extinguishing agents and venting can yield new information on effective control of the rare, but serious fire events in spacecraft.
Technical Paper

Fluid Dynamics Assessment of the VPCAR Water Recovery System in Partial and Microgravity

2006-07-17
2006-01-2131
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions. Testing was recently conducted on NASA's C-9B Reduced Gravity Aircraft to determine the microgravity performance of a key component of the VPCAR water recovery system. Six flights were conducted to evaluate the fluid dynamics of the Wiped-Film Rotating Disk (WFRD) distillation component of the VPCAR system in microgravity, focusing on the water delivery method. The experiments utilized a simplified system to study the process of forming a thin film on a disk similar to that in the evaporator section of VPCAR. Fluid issues are present with the current configuration, and the initial alternative configurations were only partial successful in microgravity operation. The underlying causes of these issues are understood, and new alternatives are being designed to rectify the problems.
Technical Paper

Flying Qualities Evaluation of a Commuter Aircraft with an Ice Contaminated Tailplane

2000-05-09
2000-01-1676
During the NASA/FAA Tailplane Icing Program, pilot evaluations of aircraft flying qualities were conducted with various ice shapes attached to the horizontal tailplane of the NASA Twin Otter Icing Research Aircraft. Initially, only NASA pilots conducted these evaluations, assessing the differences in longitudinal flight characteristics between the baseline or clean aircraft, and the aircraft configured with an Ice Contaminated Tailplane (ICT). Longitudinal tests included Constant Airspeed Flap Transitions, Constant Airspeed Thrust Transitions, zero-G Pushovers, Repeat Elevator Doublets, and, Simulated Approach and Go-Around tasks. Later in the program, guest pilots from government and industry were invited to fly the NASAT win Otter configured with a single full-span artificial ice shape attached to the leading edge of the horizontal tailplane.
Journal Article

Frostwing Co-Operation in Aircraft Icing Research

2019-06-10
2019-01-1973
The aerodynamic effects of Cold Soaked Fuel Frost have become increasingly significant as airworthiness authorities have been asked to allow it during aircraft take-off. The Federal Aviation Administration and the Finnish Transport Safety Agency signed a Research Agreement in aircraft icing research in 2015 and started a research co-operation in frost formation studies, computational fluid dynamics for ground de/anti-icing fluids, and de/anti-icing fluids aerodynamic characteristics. The main effort has been so far on the formation and aerodynamic effects of CSFF. To investigate the effects, a generic high-lift common research wind tunnel model and DLR-F15 airfoil, representing the wing of a modern jet aircraft, was built including a wing tank cooling system. Real frost was generated on the wing in a wind tunnel test section and the frost thickness was measured with an Elcometer gauge. Frost surface geometry was measured with laser scanning and photogrammetry.
Technical Paper

Ground-Based and Airborne Remote Sensing of Inflight Aircraft Icing Conditions

2000-04-11
2000-01-2112
NASA, the FAA, DoD, and NOAA have teamed with industry and academia to develop a capability to detect icing conditions ahead of aircraft using onboard or ground-based remote sensing systems. The goal of the program is to provide pilots with sufficient information to allow avoidance of icing. Information displayed to the pilot, as a measure of icing potential, will be useful in assessing the risk of entering the sensed conditions. This requires measurement and mapping of cloud microphysical parameters, especially cloud and precipitation liquid water content, droplet size and temperature, with range. Remote measurement of cloud microphysical conditions has been studied for years. However, this is the largest focused program devoted to remotely detect aircraft icing conditions. Primary funding sources are NASA Aerospace Operations Systems, the FAA Aviation Weather Research Program and William J.
Technical Paper

Hydrodynamics of Packed Bed Reactor in Low Gravity

2005-07-11
2005-01-3035
Packed bed reactors are well known for their vast and diverse applications in the chemical industry; from gas absorption, to stripping, to catalytic conversion. Use of this type of reactor in terrestrial applications has been rather extensive because of their simplicity and relative ease of operation. Developing similar reactors for use in microgravity is critical to many space-based advanced life support systems. However, the hydrodynamics of two-phase flow packed bed reactors in this new environment and the effects of one physicochemical process on another has not been adequately assessed. Surface tension or capillary forces play a much greater role which results in a shifting in flow regime transitions and pressure drop. Results from low gravity experiments related to flow regimes and two-phase pressure drop models are presented in this paper along with a description of plans for a flight experiment on the International Space Station (ISS).
Technical Paper

Ice Accretions on a Swept GLC-305 Airfoil

2002-04-16
2002-01-1519
An experiment was conducted in the Icing Research Tunnel (IRT) at NASA Glenn Research Center to obtain castings of ice accretions formed on a 28° swept GLC-305 airfoil that is representative of a modern business aircraft wing. Because of the complexity of the casting process, the airfoil was designed with three removable leading edges covering the whole span. Ice accretions were obtained at six icing conditions. After the ice was accreted, the leading edges were detached from the airfoil and moved to a cold room. Molds of the ice accretions were obtained, and from them, urethane castings were fabricated. This experiment is the icing test of a two-part experiment to study the aerodynamic effects of ice accretions.
Technical Paper

Iced Aircraft Flight Data for Flight Simulator Validation

2002-04-16
2002-01-1528
NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice.
Technical Paper

In-flight Icing Hazard Verification with NASA's Icing Remote Sensing System for Development of a NEXRAD Icing Hazard Level Algorithm

2011-06-13
2011-38-0030
From November 2010 until May of 2011, NASA's Icing Remote Sensing System was positioned at Platteville, Colorado between the National Science Foundation's S-Pol radar and Colorado State University's CHILL radar (collectively known as FRONT, or ‘Front Range Observational Network Testbed’). This location was also underneath the flight-path of aircraft arriving and departing from Denver's International Airport, which allowed for comparison to pilot reports of in-flight icing. This work outlines how the NASA Icing Remote Sensing System's derived liquid water content and in-flight icing hazard profiles can be used to provide in-flight icing verification and validation during icing and non-icing scenarios with the purpose of comparing these times to profiles of polarized moment data from the two nearby research radars.
Technical Paper

Innovative Multi-Environment, Multimode Thermal Control System

2007-07-09
2007-01-3202
Innovative multi-environment multimode thermal management architecture has been described that is capable of meeting widely varying thermal control requirements of various exploration mission scenarios currently under consideration. The proposed system is capable of operating in a single-phase or two-phase mode rejecting heat to the colder environment, operating in a two-phase mode with heat pump for rejecting heat to a warm environment, as well as using evaporative phase-change cooling for the mission phases where the radiator is incapable of rejecting the required heat. A single fluid loop can be used internal and external to the spacecraft for the acquisition, transport and rejection of heat by the selection of a working fluid that meets NASA safety requirements. Such a system may not be optimal for each individual mode of operation but its ability to function in multiple modes may permit global optimization of the thermal control system.
Technical Paper

Light Weight Nickel-Alkaline Cells Using Fiber Electrodes

2004-11-02
2004-01-3167
Using a new fiber electrode technology, currently developed and produced by Bekaert Corporation (Bekaert), Electro Energy, Inc., (EEI) Mobile Energy Products Group (formerly, Eagle-Picher Technologies, LLC, Power Systems Department) in Colorado Springs, CO has demonstrated that it is feasible to manufacture flight weight nickel hydrogen cells having about twice the specific energy (80 vs. 40 watt-hr./kg) as state-of-the-art nickel hydrogen cells that are currently flown on geosynchronous communications satellites. Although lithium-ion battery technology has made large in-roads to replace the nickel alkaline technology (nickel-cadmium, nickel-metal hydride), the technology offered here competes with lithium-ion weight and offers alternatives not present in the lithium-ion chemistry such as: ability to undergo a continuous overcharge, reversal on discharge, and sustain rate capability sufficient to start automotive and aircraft engines at subzero temperatures.
X