Refine Your Search

Topic

Author

Search Results

Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Technical Paper

A New Method for Calculating Low Energy Neutron Flux

2006-07-17
2006-01-2149
A new method is developed for calculating the low energy neutron flux in a space environment which is protected from galactic cosmic rays (GCR) and solar particle events (SPE) by shielding materials. Our calculations are compared with low energy neutron flux flight data recorded on four different STS low earth orbit missions. We also compare our neutron flux calculations with the low energy neutron flux data recorded by MIR. The low energy neutron flux calculations can be described as a deterministic method for solving the Boltzmann equation for the light ion flux associated with a given environment. Existing Monte Carlo neutron flux simulations associated with the MIR and ISS space stations are also compared with our deterministic method for calculating neutron flux.
Technical Paper

A Simplified Orbit Analysis Program for Spacecraft Thermal Design

1997-07-01
972540
This paper presents a simplified orbit analysis program developed to calculate orbital parameters for the thermal analysis of spacecraft and space-flight instruments. The program calculates orbit data for inclined and sunsynchronous earth orbits. Traditional orbit analyses require extensive knowledge of orbital mechanics to produce a simplified set of data for thermal engineers. This program was created to perform orbital analyses with minimal input and provides the necessary output for thermal analysis codes. Engineers will find the program to be a valuable analysis tool for fast and simple orbit calculations. A description of the program inputs and outputs is included. An overview of orbital mechanics for inclined and Sun-synchronous orbits is also presented. Finally, several sample cases are presented to illustrate the thermal analysis applications of the program.
Technical Paper

Aircraft Landing Dynamics Facility, A Unique Facility with New Capabilities

1985-10-01
851938
The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisions are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.
Technical Paper

Alternate Environmental Control and Life Support Systems Technologies for Space Station Application

1994-06-01
941464
Alternate Environmental Control and Life Support System (ECLSS) technologies were evaluated to reduce Space Station resources and dependence on expendables resupplied from Earth to sustain a multiperson crew in low-Earth orbit. Options were evaluated to close the oxygen (O2) loop by removing carbon dioxide (CO2) from the cabin air, reducing the CO2 to water, and electrolyzing the water to provide metabolic O2 for crew consumption. Options were also evaluated to close the urine/flush, condensate, and hygiene water loops to provide potable water for crew use. Specific evaluation parameters were derived which included weight, power, volume, maintenance, resupply consumables, and technology readiness.
Technical Paper

Braking, Steering, and Wear Performance of Radial-Belted and Bias-Ply Aircraft Tires

1992-04-01
921036
Preliminary braking, steering, and tread wear performance results from testing of 26 x 6.6 and 40 x 14 radial-belted and bias-ply aircraft tires at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are reviewed. These tire tests are part of a larger, ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program involving these two different tire sizes as well as an H46 x 18-20 tire size which has not yet been evaluated. Both dry and wet surface conditions were evaluated on two different test surfaces - nongrooved Portland cement concrete and specially constructed, hexagonal-shaped concrete paver blocks. Use of paver blocks at airport facilities has been limited to ramp and taxiway areas and the industry needs a tire friction evaluation of this paving material prior to additional airport pavement installations.
Technical Paper

CAD Model of Astronaut Radiation Exposures During EVA: Nominal and Extreme Scenarios

2002-07-15
2002-01-2458
Trapped protons and electrons in the low earth orbit (LEO) environment of the International Space Station (ISS) encountered during extra-vehicular activity (EVA) may contribute significantly to the cumulative exposure sustained by crew during extended stay missions. A recently developed CAD model of the U. S. Shuttle Space Suit is used to define the shielding properties inherent in the space suit. The model incorporates 28 separate components of the suit, with particular attention given to the helmet and backpack assemblies. Proton and electron energy spectra are taken from the NASA AP8 and AE8 environment models for solar maximum and minimum, and a simulated magnetic storm condition is derived from a 3-sigma projection of the nominal condition. Heavy-ion and electron transport codes developed at NASA-Langley are used in conjunction with the variety of space suit materials, including constituents containing metallic and non-metallic compounds as well as organic polymers.
Technical Paper

Collaborative Engineering Methods for Radiation Shield Design

2001-07-09
2001-01-2367
The hazards of ionizing radiation in space continue to be a limiting factor in the design of spacecraft and habitats. Shielding against such hazards adds to the mission costs and is even an enabling technology in human exploration and development of space. We are developing a web accessible system for radiation hazard evaluation in the design process. The framework for analysis and collaborative engineering is used to integrate mission trajectory, environmental models, craft materials and geometry, system radiation response functions, and mission requirements for evaluation and optimization of shielding distribution and materials. Emphasis of the first version of this integrated design system will address low Earth orbit allowing design system validation using STS, Mir, and ISS measurements. The second version will include Mars, lunar, and other deep space mission analysis.
Technical Paper

Cornering and Wear Behavior of the Space Shuttle Orbiter Main Gear Tire

1987-10-01
871867
One of the factors needed to describe the handling characteristics of the Space Shuttle Orbiter during the landing rollout is the response of the vehicle's tires to variations in load and yaw angle. An experimental investigation of the cornering characteristics of the Orbiter main gear tires was conducted at the NASA Langley Research Center Aircraft Landing Dynamics Facility. This investigation compliments earlier work done to define the Orbiter nose tire cornering characteristics. In the investigation, the effects of load and yaw angle were evaluated by measuring parameters such as side load and drag load, and obtaining measurements of aligning torque. Because the tire must operate on an extremely rough runway at the Shuttle Landing Facility at Kennedy Space Center (KSC), tests were also conducted to describe the wear behavior of the tire under various conditions on a simulated KSC runway surface. Mathematical models for both the cornering and the wear behavior are discussed.
Technical Paper

Development of the Temperature Control Scheme for the CALIPSO Integrated Lidar Transmitter Subsystem

2006-07-17
2006-01-2277
Following the satellite-level thermal vacuum test for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation spacecraft, project thermal engineers determined that the radiator used to cool the Integrated Lidar Transmitter subsystem during its operation was oversized. In addition, the thermal team also determined that the operational heaters were undersized, thus creating two related problems. Without the benefit of an additional thermal vacuum test, it was necessary to develop and prove by analysis a laser temperature control scheme using the available resources within the spacecraft along with proper resizing of the radiator. A resizing methodology and new laser temperature control scheme were devised that allowed, with a minimum of 20% heater power margin, the operating laser to maintain temperature at the preferable set point. This control scheme provided a solution to a critical project problem.
Technical Paper

Egress Testing of the HL-20 Personnel Launch System

1993-07-01
932039
Human factors egress testing of the HL-20 Personnel Launch System, a reusable flight vehicle for Space Station crew rotation, was conducted in both the vertical (launch) and horizontal (landing) positions using a full-scale model. Ingress and egress of 10-person crews were investigated with volunteers representing a range of heights. For both the vertical and horizontal positions, interior structural keels had little impact on egress times which were generally less than 30 seconds. Wearing Shuttle partial pressure suits required somewhat more egress time than when ordinary flight suits were worn due to the larger helmet of the Shuttle suit.
Technical Paper

Elements Affecting Runway Traction

1974-02-01
740496
The five basic elements affecting runway traction for jet transport aircraft operation are identified and described in terms of pilot, aircraft system, atmospheric, tire, and pavement performance factors or parameters. Runway traction is so affected by the interaction of these elements that it becomes an impossible task to discuss the effects of each element individually. For this reason, this paper discusses runway traction under the general headings of dry, wet and flooded, and snow and ice conditions. Where possible, research results are summarized, and means for restoring or improving runway traction for these different conditions are discussed.
Technical Paper

Evaluation of Space Station Thermal Control Techniques

1986-07-14
860998
A procedure is developed for evaluating various candidates for thermal control in the orbiting space station. Candidates for acquisition, transport and rejection are considered. For example, thermal rejection candidates include heat pipe radiators, high capacity heat pipe radiators and liquid droplet raditors. A computer program has been developed which computes subsystem and total system weights, volumes, powers and costs for a system consisting of selected acquisition, transport and rejection candidates. The program user is also able to select mission parameters such as duration, resupply interval, thermal loads, transport distance, acquisition temperature and rejection temperature. Simulation models are included in the program which allow the user to change candidate designs. For example, for a high capacity heat pipe radiator the user may change working fluid, materials, radiator temperature, radiator geometry, surface emissivity and surface absorptivity.
Technical Paper

Fifty Years of Laminar Flow Flight Testing

1988-10-01
881393
Laminar flow flight experiments conducted over the past fifty years will be reviewed. The emphasis will be on flight testing conducted under the NASA Laminar Flow Control Program which has been directed towards the most challenging technology application- the high subsonic speed transport. The F111/TACT NLF Glove Flight Test, the F-14 Variable Sweep Transition Flight Experiment, the 757 Wing Noise Survey and NLF Glove Flight Test, the NASA Jetstar Leading Edge Flight Test Program, and the recently initiated Hybrid Laminar Flow Control Flight Experiment will be discussed. To place these recent experiences in perspective, earlier important flight tests will first be reviewed to recall the lessons learned at that time.
Technical Paper

Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

2006-07-17
2006-01-2236
This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes).
Technical Paper

Flow Rate and Trajectory of Water Spray Produced by an Aircraft Tire

1986-10-01
861626
One of the risks associated with wet runway aircraft operation is the ingestion of water spray produced by an aircraft's tires into its engines. This problem can be especially dangerous at or near rotation speed on the takeoff roll. An experimental investigation was conducted in the NASA Langley Research Center Hydrodynamics Research Facility to measure the flow rate and trajectory of water spray produced by an aircraft nose tire operating on a flooded runway. The effects of various parameters on the spray patterns including distance aft of nosewheel, speed, load, and water depth were evaluated. Variations in the spray pattern caused by the airflow about primary structure such as the fuselage and wing are discussed. A discussion of events in and near the tire footprint concerning spray generation is included.
Technical Paper

International Space Station Radiation Shielding Model Development

2001-07-09
2001-01-2370
The projected radiation levels within the International Space Station (ISS) have been criticized by the Aerospace Safety Advisory Panel in their report to the NASA Administrator. Methods for optimal reconfiguration and augmentation of the ISS shielding are now being developed. The initial steps are to develop reconfigurable and realistic radiation shield models of the ISS modules, develop computational procedures for the highly anisotropic radiation environment, and implement parametric and organizational optimization procedures. The targets of the redesign process are the crew quarters where the astronauts sleep and determining the effects of ISS shadow shielding of an astronaut in a spacesuit. The ISS model as developed will be reconfigurable to follow the ISS. Swapping internal equipment rack assemblies via location mapping tables will be one option for shield optimization.
Technical Paper

JOVIAN ICY MOON EXCURSIONS: Radiation Fields, Microbial Survival and Bio-contamination Study

2004-07-19
2004-01-2327
The effects of both the cosmic ray heavy ion exposures and the intense trapped electron exposures are examined with respect to impact on cellular system survival on exterior spacecraft surfaces as well as at interior (shielded) locations for a sample mission to Jupiter’s moons. Radiation transport through shield materials and subsequent exposures are calculated with the established Langley heavy ion and electron deterministic codes. In addition to assessing fractional DNA single and double strand breaks, a variety of cell types are examined that have greatly differing radio-sensitivities. Finally, implications as to shield requirements for controlled biological experiments are discussed.
Technical Paper

Langley Research Center Resources and Needs for Manned Space Operations Simulation

1987-10-01
871724
Over the past three decades, the application of simulation facilities to manned space flight projects has increased chances of successful mission completion by revealing the capabilities and limitations of both man and machine. The Space Station era, which implies on-orbit assembly, heightened system complexity, and great diversity of operations and equipment, will require increased dependence on simulation studies to validate the tools and techniques being proposed. For this reason the Society of Automotive Engineers (SAE) undertook a survey of both the facilities available for and the research requiring such simulations. This paper was written to provide LaRC input to the SAE survey of simulation needs and resources. The paper provides a brief historial sketch of early Langley Research Center simulators, and the circumstances are described which resulted in a de-emphasis of manned simulation in 1971.
Technical Paper

Man's Role in a Remote Orbital Servicing System

1983-10-03
831422
Advancing technology and existing needs are converging toward a new spacecraft system - a free-flying telemanipulator system which can perform satellite servicing, minor repairs, inspection, and retrieval. Langley is supporting the technology required and performing systems analysis for such a vehicle. Man is a major part of the system - performing both high level direction and lower level control functions, but sharing these functions with some onboard autonomy. This paper discusses the technical challenges and the role of man in such a system, and results from recent simulation studies.
X