Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Technical Paper

A Novel Repair Technique for the Internal Thermal Control System Dual-Membrane Gas Trap

2005-07-11
2005-01-3079
A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas trap was designed to last for the entire lifetime of the ISS, and therefore was not designed to be repaired. However, repair of these gas traps is now a necessity due to contamination from the on-orbit ITCS fluid and other sources on the ground as well as a limited supply of flight gas traps. This paper describes a novel repair technique that has been developed that will allow the refurbishment of contaminated gas traps and their return to flight use.
Technical Paper

A Robust Method of Countersink Inspection Using Machine Vision

2004-09-21
2004-01-2820
An automated system drills the outer moldline holes on a military aircraft wing. Currently, the operator manually checks countersink diameter every ten holes as a process quality check. The manual method of countersink inspection (using a countersink gauge with a dial readout) is prone to errors both in measurement and transcription, and is time consuming since the operator must stop the automated equipment before measuring the hole. Machine vision provides a fast, non-contact method for measuring countersink diameter, however, data from machine vision systems is frequently corrupted by non-gaussian noise which causes traditional model fitting methods, such as least squares, to fail miserably. We present a solution for circle measurement using a statistically robust fitting technique that does an exceptional job of identifying the countersink even in the presence of large amounts of structured and non-structured noise such as tear-out, scratches, surface defects, salt-and-pepper, etc.
Technical Paper

A Simulation Evaluation of VFR Heliport Operations in an Obstacle-Rich Environment

1997-10-13
975532
A study was conducted to investigate the impacts of obstacles on pilot performance, workload, and perceptions of safety in a visual flight rule (VFR) obstacle-rich environment (ORE). The study was conducted using a piloted simulation of a single-rotor, multi-engine helicopter operating in a highly detailed urban visual scene database. The database contained multiple obstacle types, with variable obstacle heights and densities. Nine pilots completed the approaches and departures into and out of a heliport located in the center of the generic urban environment. Two flight routes offered unique presentations of terrain and obstacle types. Obstacle height/density and time of day/lighting parameters were systematically manipulated. A multi-dimensional data collection methodology employing the simultaneous collection of direct aircraft state, pilot performance data, pilot physiological data and pilot subjective responses was employed.
Technical Paper

Adsorption and Desorption Effects on Carbon Brake Material Friction and Wear Characteristics

2005-10-03
2005-01-3436
The characteristics of the friction materials used in aircraft brakes are extremely important to the performance and safe operation of transport airplanes. These characteristics can change during exposure to environmental effects in the duty cycle, which can lead to problems, such as abnormally low friction, or brake induced vibration. Water vapor in the atmosphere produces a direct lubricant effect on carbon. Observed transition temperatures within the range of 140°C to 200°C, associated with increases in friction and wear of carbon brake materials, are attributed to water vapor desorption. Friction and wear transitions in the range of 500°C to 900°C may be associated with oxygen desorption.
Technical Paper

Air Circulation and Carbon Dioxide Concentration Study of International Space Station Node 2 with Attached Modules

2004-07-19
2004-01-2498
Crew health is dependent on the concentration of carbon dioxide in the atmosphere breathed. Often, models used for concentration have used the assumption that each module of the space station is well mixed, i.e. that the CO2 concentration is constant throughout the module. In this paper, Computational Fluid Dynamics (CFD) modeling is used to assess and validate the accuracy of that assumption. The concentration of carbon dioxide as calculated by CFD was compared to the concentration as calculated by a lumped parameter model. The assumption that the module is well mixed allows the use of relatively simple models, which can be developed and run quickly in order to support decisions for on-orbit analysis. CFD models generate more detailed information, such as CO2 gradients within the modules and airflow and mixing characteristics. However, CFD models, particularly transient models, take longer to develop and use.
Technical Paper

Air Quality Simulation and Assessment (Aqsa) Model

2003-07-07
2003-01-2438
An air quality simulation and assessment (AQSA) model was developed to simulate/evaluate the integrated system performance and obtain air quality characteristics and air contaminants inside the habitable compartments. This model applies both fixed control volume and quasi-steady-state approach for a multi-volume system to assess system performance, operating constraints, and capabilities. The model also integrates a state-of-the-art probabilistic analysis tool, UNIPASS, to compute failure probability due to the uncertainties of variables. In addition, this integrated model also predicts the most likely outcomes for analyzing risks and uncertainties as well as for quantitative toxicological evaluation. This model has been successfully and independently corrected/verified by NASA/JSC to be a very effective, reliable, and accurate tool, while providing savings in both the cost and time of the analysis.
Technical Paper

An Integrated Human Modeling Simulation Process for the International Space Station, Intra-Vehicular Activity

2001-09-11
2001-01-3035
Defining a process for integrating human modeling within the design and verification activities of the International Space Station (ISS) has proven to be as important as the simulations themselves. The process developed (1) ensured configuration management of the required digital mockups, (2) provided consistent methodology for simulating and analyzing human tasks and hardware layout, (3) facilitated an efficient method of communicating design requirements and relaying satisfaction of contract requirements, and (4) provided substantial cost savings by reducing the amount of late redesign and expensive mockup tests. Human simulation is frequently the last step in the design process. Consequently, the influence it has on product design is minimal and oftentimes being used as a post-design verification tool.
Technical Paper

Analysis and Predicted Temperature Control of Crew Quarters added to Node 2 of the International Space Station

2007-07-09
2007-01-3071
Currently scheduled to be delivered to the International Space Station (ISS) in 2009, Crew Quarters (CQs) will be installed in the Node 2 Module. The CQs provide crewmembers with private space, a place to sleep, and minimal storage. Analysis is to be performed to determine if the United States Operational Segment (USOS) Node 2 can maintain temperature between 47°C and 62°C (65°F and 80°F) [units are CCGS with U.S unit in parenthesis] within the CQ. The analysis will concentrate on the nominal hot environmental case. Environmental heat is due to solar heating of the external shell of the ISS. Configurations including both three and four CQs are examined, as well as multiple configurations of the Low Temperature Loop (LTL) that flows through the Node 2 Common Cabin Air Assembly (CCAA). This paper describes the analysis performed to determine if Node 2 will be able to maintain cabin temperature between 47°C and 62°C (65°F and 85°F).
Technical Paper

Analysis of the Effect of Age on Shuttle Orbiter Lithium Hydroxide Canister Performance

2005-07-11
2005-01-2768
Recent efforts have been pursued to establish the usefulness of Space Shuttle Orbiter lithium hydroxide (LiOH) canisters beyond their certified two-year shelf life, at which time they are currently considered “expired.” A stockpile of Orbiter LiOH canisters are stowed on the International Space Station (ISS) as a backup system for maintaining ISS carbon dioxide Canisters with older (CO2) control. Canister with older pack dates must routinely be replaced with newly packed canisters off-loaded from the Orbiter Middeck. Since conservation of upmass is critical for every mission, the minimization of canister swap-out rate is paramount. LiOH samples from canisters with expired dates that had been returned from the ISS were tested for CO2 removal performance at the NASA Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD). Through this test series and subsequent analysis, performance degradation was established.
Technical Paper

Analysis to Characterize Fresh vs. Aged Shuttle Orbiter Lithium Hydroxide Performance

2006-07-17
2006-01-2048
A recent endeavor has been undertaken to understand the performance of Shuttle Orbiter lithium hydroxide (LiOH) canisters used during STS-114. During this mission, the crew relied on both fresh LiOH and aged LiOH stored on the International Space Station (ISS). Due to the Space Shuttle being grounded after the Columbia accident, the canisters stored on ISS had passed the certified two-year shelf life and were considered expired. The focus of the analysis was to determine the performance of expired LiOH in relation to fresh LiOH and the accuracy of previous predictions1 regarding the performance of expired LiOH. Understanding the performance of expired LiOH is crucial in enabling the extension of the useful life of LiOH canisters. Extending the shelf life has ramifications not only in the current Shuttle program, but in regard to future exploration missions fulfilling the Vision for Space Exploration as well.
Journal Article

Application of Metrology, Statistics, Root Cause Analysis, and Cost of Quality to Enable Quality Improvements and Implementation of Statistical Process Controls for Acceptance of Large Complex Assemblies

2021-03-02
2021-01-0025
For new aircraft production, initial production typically reveals difficulty in achieving some assembly level tolerances which in turn lead to non-conformances at integration. With initial design, tooling, build plans, automation, and contracts with suppliers and partners being complete, the need arises to resolve these integration issues quickly and with minimum impact to production and cost targets. While root cause corrective action (RCCA) is a very well know process, this paper will examine some of the unique requirements and innovative solutions when addressing variation on large assemblies manufactured at various suppliers. Specifically, this paper will first review a completed airplane project (Project A) to improve fuselage circumferential and seat track joins and continue to the discussion on another application (Project B) on another aircraft type but having similar challenges.
Technical Paper

Application of Mixed Reality (MR) Based Remote Assistance for Disposition & Resolution on Critical Nonconformance (NC) for Aircraft Production System during Covid or Post Covid Work Environment

2022-10-05
2022-28-0077
Currently, the Aviation industry uses traditional methods of communication, coordination, & human interaction to give disposition to resolve any kind of nonconformance occurrences which occur during manufacturing or operation of commercial or defense products. This involves increased in-person interaction and additional travel, especially to address the nonconformance issues arising at supplier plants or airports around the globe. During Covid and post-Covid environments, human interactions for the transfer of detailed information at different & distant manufacturing plant locations has been difficult, since support engineering teams (Example: Liaison, Product Review, Quality, Supplier Quality, and Manufacturing Engineering, and/or Service Engineering) have been working remotely.
Technical Paper

Assessment of Lithium Hydroxide Conservation Via International Space Station Control of Orbiter Carbon Dioxide

2002-07-15
2002-01-2271
In order to conserve mass and volume, it was proposed that the International Space Station (ISS) control the level of carbon dioxide (CO2) in the Space Shuttle Orbiter while the Orbiter is docked to the ISS. If successful, this would greatly reduce the number of lithium hydroxide (LiOH) canisters required for each ISS-related Orbiter mission. Because of the impact on the Orbiter Environmental Control and Life Support Subsystem (ECLSS), as well as on the Orbiter flight manifest, a Space Shuttle Program (SSP) analysis was necessary. STS-108 (ISS UF1) pre-flight analysis using the Personal Computer Thermal Analyzer Program (PCTAP) predicted that the ISS would be able to control the level of CO2 in the Orbiter (and throughout the stack) under nominal conditions with no supplemental LiOH required. This analysis assumed that the Carbon Dioxide Removal Assembly (CDRA) located in the U.S.
Technical Paper

Assessment of the Microbial Control Measures for the Temperature and Humidity Control Subsystem Condensing Heat Exchanger of the International Space Station

1999-07-12
1999-01-2109
In August 1997 NASA/Marshall Space Flight Center (MSFC) began a test with the objective of monitoring the growth of microorganisms on material simulating the surface of the International Space Station (ISS) Temperature and Humidity Control (THC) Condensing Heat Exchanger (CHX). The test addressed the concerns of potential uncontrolled microbial growth on the surface of the THC CHX subsystem. For this study, humidity condensate from a closed manned environment was used as a direct challenge to the surfaces of six cascades in a test set-up. The condensate was collected using a Shuttle-type CHX within the MSFC End-Use Equipment Testing Facility. Panels in four of the six cascades tested were coated with the ISS CHX silver impregnated hydrophilic coating. The remaining two cascade panels were coated with the hydrophilic coating without the antimicrobial component, silver. Results of the fourteen-month study are discussed in this paper.
Technical Paper

Automated Model Evaluation and Verification of Aircraft Components

2010-11-02
2010-01-1806
The trend of moving towards model-based design and analysis of new and upgraded aircraft platforms requires integrated component and subsystem models. To support integrated system trades and design studies, these models must satisfy modeling and performance guidelines regarding interfaces, implementation, verification, and validation. As part of the Air Force Research Laboratory's (AFRL) Integrated Vehicle and Energy Technology (INVENT) Program, standardized modeling and performance guidelines have been established and documented in the Modeling Requirement and Implementation Plan (MRIP). Although these guidelines address interfaces and suggested implementation approaches, system integration challenges remain with respect to computational stability and predicted performance over the entire operating region for a given component. This paper discusses standardized model evaluation tools aimed to address these challenges at a component/subsystem level prior to system integration.
Technical Paper

Autonomous Flight Control Development on the Active Aeroelastic Wing Aircraft

2004-11-02
2004-01-3116
A highly modified F/A-18 aircraft is being used to demonstrate that aeroelastic wing twist can be used to roll a high performance aircraft. A production F/A-18A/B/C/D aircraft uses a combination of aileron deflection, differential horizontal tail deflection and differential leading edge flap deflection to roll the aircraft at various Mach numbers and altitudes. The Active Aeroelastic Wing program is demonstrating that aeroelastic wing twist can be used in lieu of the horizontal tail to provide autonomous roll control at high dynamic pressures. Aerodynamic and loads data have been gathered from the Phase I AAW flight test program. Now control laws have been developed to exploit aeroelastic wing twist and provide autonomous flight control of the AAW aircraft during Phase II. Wing control surfaces are being deflected in non-standard ways to create aeroelastic wing twist and develop the required rolling moments without use of the horizontal tail.
Technical Paper

CFD Simulation on the Airflow and CO2 Transport in the U.S Lab: International Space Station Flight 5A Configuration

2001-07-09
2001-01-2255
The U. S. Laboratory (USL) module was added to the International Space Station (ISS) in Flight 5A, which would boost the Environmental Control & Life Support System (ECLSS) functional capabilities of the ISS. In the USL cabin aisle way, the air circulation is provided by a Temperature & Humidity Control (THC) system. To provide adequate ventilation under various open/close combinations of the rack panels, it would be very challenging by conducting many tests prior to the launch of Flight 5A. Computational fluid dynamics (CFD) simulation technology is utilized to investigate the airflow in the U.S. Lab for various operating scenarios. A CFD model, which includes the supply diffusers, the return registers, the ventilation of the temporary crew quarter, the gap between the outer pressure shell and all the racks, is modeled. The ventilation performance for the cabin aisle way and air behind panels is addressed.
Journal Article

CFD Study of Ventilation and Carbon Dioxide Transport for ISS Node 2 and Attached Modules

2009-07-12
2009-01-2549
The objective of this study is to evaluate ventilation efficiency regarding to the International Space Station (ISS) cabin ventilation during the ISS assembly mission 1J. The focus is on carbon dioxide spatial/temporal variations within the Node 2 and attached modules. An integrated model for CO2 transport analysis that combines 3D CFD modeling with the lumped parameter approach has been implemented. CO2 scrubbing from the air by means of two ISS removal systems is taken into account. It has been established that the ventilation scheme with an ISS Node 2 bypass duct reduces short-circuiting effects and provides less CO2 gradients when the Space Shuttle Orbiter is docked to the ISS. This configuration results in reduced CO2 level within the ISS cabin.
Technical Paper

Calculations of Ice Shapes on Oscillating Airfoils

2011-06-13
2011-38-0015
The desire to operate rotorcraft in icing conditions has renewed the interest in developing high-fidelity analysis methods to predict ice accumulation and the ensuing rotor performance degradation. A subset of providing solutions for rotorcraft icing problems is predicting two-dimensional ice accumulation on rotor airfoils. While much has been done to predict ice for fixed-wing airfoil sections, the rotorcraft problem has two additional challenges: first, rotor airfoils tend to experience flows in higher Mach number regimes, often creating glaze ice which is harder to predict; second, rotor airfoils oscillate in pitch to produce balance across the rotor disk. A methodology and validation test cases are presented to solve the rotor airfoil problem as an important step to solving the larger rotorcraft icing problem. The process couples Navier-Stokes CFD analysis with the ice accretion analysis code, LEWICE3D.
X