Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Water Recovery System Evolved for Exploration

2006-07-17
2006-01-2274
A new water recovery system designed towards fulfillment of NASA's Vision for Space Exploration is presented. This water recovery system is an evolution of the current state-of-the-art system. Through novel integration of proven technologies for air and water purification, this system promises to elevate existing technology to higher levels of optimization. The novel aspect of the system is twofold: Volatile organic contaminants will be removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase, and vapor compression distillation technology will be used to process the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removal of volatile organic contaminants from the vapor phase is more efficient.
Technical Paper

Cabin Air Quality on Board Mir and the International Space Station - A Comparison

2007-07-09
2007-01-3219
The maintenance of the cabin atmosphere aboard spacecraft is critical not only to its habitability but also to its function. Ideally, air quality can be maintained by striking a proper balance between the generation and removal of contaminants. Both very dynamic processes, the balance between generation and removal can be difficult to maintain and control because the state of the cabin atmosphere is in constant evolution responding to different perturbations. Typically, maintaining a clean cabin environment on board crewed spacecraft and space habitats is a central function of the environmental control and life support (ECLS) system. While active air quality control equipment is deployed on board every vehicle to remove carbon dioxide, water vapor, and trace chemical components from the cabin atmosphere, perturbations associated with logistics, vehicle construction and maintenance, and ECLS system configuration influence the resulting cabin atmospheric quality.
Technical Paper

Evolution of the Baseline ISS ECLSS Technologies-The Next Logical Steps

2004-07-19
2004-01-2385
The baseline environmental control and life support (ECLS) systems currently deployed on board the International Space Station (ISS) and that planned to be launched in Node 3 are based upon technologies selected in the early 1990's. While they are generally meeting or exceeding requirements for supporting the ISS crew, lessons learned from years of on orbit and ground testing, together with new advances in technology state of the art, and the unique requirements for future manned missions prompt consideration of the next logical step to enhance these systems to increase performance, robustness, and reliability, and reduce on-orbit and logistical resource requirements. This paper discusses the current state of the art in ISS ECLS system technologies, and identifies possible areas for enhancement and improvement.
Technical Paper

Integrated Orbiter/International Space Station Air Quality Analysis for Post-Mission 2A.1 Risk Mitigation

2000-07-10
2000-01-2250
Crewmember ingress of the International Space Station (ISS) before that time accorded by the original ISS assembly sequence, and thus before the ISS capability to adequately control the levels of temperature, humidity, and carbon dioxide, poses significant impacts to ISS Environmental Control and Life Support (ECLS). Among the most significant considerations necessitated by early ingress are those associated with the capability of the Shuttle Transportation System (STS) Orbiter to control the aforementioned levels, the capability of the ISS to deliver the conditioned air among the ISS elements, and the definition and distribution of crewmember metabolic heat, carbon dioxide, and water vapor. Even under the assumption that all Orbiter and ISS elements would be operating as designed, condensation control and crewmember comfort were paramount issues preceding each of the ISS Missions 2A and 2A.1.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 1999-2000

2000-07-10
2000-01-2248
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies which provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S ECLS system activities over the past year, covering the period of time between May 1999 and April 2000. Assembly of the ISS has been delayed due to changes in element processing schedules. The 2A.1 logistics flight to ISS occurred in May 1999. The remaining Phase 2 elements have completed most of the element level testing and integration and are approaching final reviews for acceptance for flight. The Phase 3 regenerative ECLS designs have reached the Critical Design Review phase, while several of the Phase 3 elements have held Preliminary or Critical Design Reviews.
Technical Paper

Post-Flight Sampling and Loading Characterization of Trace Contaminant Control Subassembly Charcoal

2003-07-07
2003-01-2487
Trace chemical contaminants produced by equipment offgassing and human metabolic processes are removed from the atmosphere of the International Space Station's U.S. Segment by a trace contaminant control subassembly (TCCS). The TCCS employs a combination of physical adsorption, thermal catalytic oxidation, and chemical adsorption processes to accomplish its task. A large bed of granular activated charcoal is a primary component of the TCCS. The charcoal contained in this bed, known as the charcoal bed assembly (CBA), is expendable and must be replaced periodically. Pre-flight engineering analyses based upon TCCS performance testing results established a service life estimate of 1 year. After nearly 1 year of cumulative in-flight operations, the first CBA was returned for refurbishment. Charcoal samples were collected and analyzed for loading to determine the best estimate for the CBA's service life.
X