Refine Your Search

Topic

Author

Search Results

Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Study of Particulate Extracts from 1980s Heavy Duty Diesel Engines Run on Steady-State and Transient Cycles

1989-11-01
892491
Interlaboratory comparisons of extraction and chemical characterization are reported for exhaust particulate from heavy-duty diesel engines, typical of the 1980s. This study is the final of a series conducted by member companies of the Coordinating Research Council on methods and measurements to expand knowledge about unregulated constituents of diesel-engine exhaust. Exhaust particulate from heavy-duty diesel engines of the 1980s averaged about 25 wt% extractable by methylene chloride. In engine-to-engine comparisons, the extractable fraction correlated with the ratio of total engine hydrocarbon to nonextractable carbon particulate. These comparative studies demonstrate methods for monitoring changes in the composition of diesel particulate that may occur as stringent emission standards are implemented in the 1990s.
Technical Paper

A Tool Kit to Generate 3D Animated CAESAR Bodies

2005-06-14
2005-01-2723
The Civilian American and European Surface Anthropometry Resource (CAESAR) database provides a comprehensive source for body measurement in numerous industries such as apparel, aerospace, and automobile. Generating animated CAESAR body sequences from still surface and landmark data will stimulate research and design in these areas. A tool kit has been developed to convert CAESAR bodies to models compliant with the Humanoid Animation specification (H-Anim). It will be helpful to set up a realistic motion capable humanoid library for application environment that can be reused in a wide variety of ergonomic applications. The process consists of preprocessing the mesh, building a skeleton structure, creating segments of the body, assigning weights for vertices, and integrating motion capture data. Publicly available software is adopted for mesh compression and hole filling. C programs were developed to implement the translation from CAESAR body data to H-Anim.
Technical Paper

An Advanced Diesel Fuels Test Program

2001-03-05
2001-01-0150
This paper reports on DaimlerChrysler's participation in the Ad Hoc Diesel Fuels Test Program. This program was initiated by the U.S. Department of Energy and included major U.S. auto makers, major U.S. oil companies, and the Department of Energy. The purpose of this program was to identify diesel fuels and fuel properties that could facilitate the successful use of compression ignition engines in passenger cars and light-duty trucks in the United States at Tier 2 and LEV II tailpipe emissions standards. This portion of the program focused on minimizing engine-out particulates and NOx by using selected fuels, (not a matrix of fuel properties,) in steady state dynamometer tests on a modern, direct injection, common rail diesel engine.
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

2004-10-25
2004-01-2973
Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

2006-04-03
2006-01-1512
Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

Detection of Smoke from Microgravity Fires

2005-07-11
2005-01-2930
The history and current status of spacecraft smoke detection is discussed including a review of the state of understanding of the effect of gravity on the resultant smoke particle size. The results from a spacecraft experiment (Comparative Soot Diagnostics (CSD)) which measured microgravity smoke particle sizes are presented. Five different materials were tested producing smokes with different properties including solid aerosol smokes and liquid droplets aerosol smokes. The particulate size distribution for the solid particulate smokes increased substantially in microgravity and the results suggested a corresponding increase for the smokes consisting of a liquid aerosol. A planned follow on experiment that will resolve the issues raised by CSD is presented. Early results from this effort have provided the first measurements of the ambient aerosol environment on the ISS (International Space Station) and suggest that the ISS has very low ambient particle levels.
Technical Paper

Development of an Engine Test Cell for Rapid Evaluation of Advanced Powertrain Technologies using Model-Controlled Dynamometers

2006-04-03
2006-01-1409
Current engine development processes typically involve extensive steady-state and simple transient testing in order to characterize the engine's fuel consumption, emissions, and performance based on several controllable inputs such as throttle, spark advance, and EGR. Steady-state and simple transient testing using idealistic load conditions alone, however, is no longer sufficient to meet powertrain development schedule requirements. Mapping and calibration of an engine under transient operation has become critically important. And, independent engine development utilizing accelerated techniques is becoming more attractive. In order to thoroughly calibrate new engines in accelerated fashion and under realistic transient conditions, more advanced testing is necessary.
Technical Paper

Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels

2007-04-16
2007-01-0201
Computational fluid dynamic (CFD) simulations that include realistic combustion/emissions chemistry hold the promise of significantly shortening the development time for advanced high-efficiency, low-emission engines. However, significant challenges must be overcome to realize this potential. This paper discusses these challenges in the context of diesel combustion and outlines a technical program based on the use of surrogate fuels that sufficiently emulate the chemical complexity inherent in conventional diesel fuel.
Technical Paper

Development of the Direct Nonmethane Hydrocarbon Measurement Technique for Vehicle Testing

2003-03-03
2003-01-0390
The Automotive Industry/Government Emissions Research CRADA (AIGER) has been working to develop a new methodology for the direct determination of nonmethane hydrocarbons (DNMHC) in vehicle testing. This new measurement technique avoids the need for subtraction of a separately determined methane value from the total hydrocarbon measurement as is presently required by the Code of Federal Regulations. This paper will cover the historical aspects of the development program, which was initiated in 1993 and concluded in 2002. A fast, gas chromatographic (GC) column technology was selected and developed for the measurement of the nonmethane hydrocarbons directly, without any interference or correction being caused by the co-presence of sample methane. This new methodology chromatographically separates the methane from the nonmethane hydrocarbons, and then measures both the methane and the backflushed, total nonmethane hydrocarbons using standard flame ionization detection (FID).
Technical Paper

Effect of Cross Flow on Performance of a PEM Fuel Cell

2007-04-16
2007-01-0697
A serpentine flow channel is one of the most common and practical channel layouts for a PEM fuel cell since it ensures the removal of water produced in a cell. While the reactant flows along the flow channel, it can also leak or cross to neighboring channels via the porous gas diffusion layer due to a high pressure gradient. Such a cross flow leads to effective water removal in a gas diffusion layer thus enlarging the active area for reaction although this cross flow has largely been ignored in previous studies. In this study, neutron radiography is applied to investigate the liquid water accumulation and its effect on the performance of a PEM fuel cell. Liquid water tends to accumulate in the gas diffusion layer adjacent to the flow channel area while the liquid water formed in the gas diffusion layer next to the channel land area seems to be effectively removed by the cross leakage flow between the adjacent flow channels.
Technical Paper

Evaluation of the Bag Mini-Diluter and Direct Vehicle Exhaust Volume System for Low Level Emissions Measurement

2000-03-06
2000-01-0793
With the adoption of the California Low-Emission Vehicle Regulations and the associated lower emission standards such as LEV (Low-Emission Vehicle in 1990), ULEV (Ultra-Low-Emission Vehicle), and LEV II (1998 with SULEV-Super Ultra Low Emission Vehicle), concerns were raised by emissions researchers over the accuracy and reliability of collecting and analyzing emissions measurements at such low levels. The primary concerns were water condensation, optimizing dilution ratios, and elimination of background contamination. These concerns prompted a multi-year research program looking at several new sampling techniques. This paper will describe the cooperative research conducted into one of these new technologies, namely the Bag Mini-Diluter (BMD) and Direct Vehicle Exhaust (DVE) Volume system.
Technical Paper

Experimental and Modeling Evaluations of a Vacuum-Insulated Catalytic Converter

1999-10-25
1999-01-3678
Vehicle evaluations and model calculations were conducted on a vacuum-insulated catalytic converter (VICC). This converter uses vacuum and a eutectic PCM (phase-change material) to prolong the temperature cool-down time and hence, may keep the converter above catalyst light-off between starts. Tailpipe emissions from a 1992 Tier 0 5.2L van were evaluated after 3hr, 12hr, and 24hr soak periods. After a 12hr soak the HC emissions were reduced by about 55% over the baseline HC emissions; after a 24hr soak the device did not exhibit any benefit in light-off compared to a conventional converter. Cool-down characteristics of this VICC indicated that the catalyst mid-bed temperature was about 180°C after 24hrs. Model calculations of the temperature warm-up were conducted on a VICC converter. Different warm-up profiles within the converter were predicted depending on the initial temperature of the device.
Technical Paper

Ground Calibration of the Mass Spectrometer and Total Pressure Sensor in the Midcourse Space Experiment (MSX)

1994-06-01
941473
The absolute measurement of low-density gases, especially water, is of interest to space experiments. Water measurements have been advanced by the development of a primary standard for low-density water vapor. This standard, which uses arrays of laser-drilled holes as a Knudsen-effusion water source, was used to calibrate and characterize the performance of several vacuum instruments, including transfer standards used to calibrate the MSX flight mass spectrometer. This mass spectrometer and a total pressure sensor will be used to measure the absolute densities of molecules outgassing from the spacecraft during orbit as well as gases present in the ambient atmosphere. Results for the performance of these two flight instruments over a large range of partial pressures of H2O, H2, He, N2, O2 and Ar are presented, as well as test results for the reference standards.
Technical Paper

In Vehicle Exhaust Mount Load Measurement and Calculation

2006-04-03
2006-01-1258
Exhaust durability is an important measure of quality, which can be predicted using CAE with accurate mount loads. This paper proposes an innovative method to calculate these loads from measured mount accelerations. A Chrysler vehicle was instrumented with accelerometers at both ends of its four exhaust mounts. The vehicle was tested at various durability routes or events at DaimlerChrysler Proving Grounds. These measured accelerations were integrated to obtain their velocities and displacements. The differences in velocities and displacements at each mount were multiplied by its damping and stiffness rates to obtain the mount load. The calculation was conducted for all three translational directions and for all events. The calculated mount loads are shown within reasonable range. Along with CAE, it is suggested to explore this method for exhaust durability development.
Technical Paper

Injection Molded, Extruded-In-Color Film Fascia

2003-03-03
2003-01-1126
A new multi-layer co-extruded in-color Ionomer film is developed to provide an alternative decoration process to replace paint on Dodge Neon Fascias. The Ionomer film provides a high-gloss “class-A” surface in both non-metallic and metallic colors that match the car body paint finish. Using the Ionomer film to decorate fascias reduces cost; eliminates VOCs; increases manufacturing flexibility and improves performance (weatherability and durability). The molding process consists of thermoforming a film blank and injection molding Polypropylene or TPO behind the film. The paper will include the background, the benefits, the technology development objectives, the film materials development, tooling optimization, film fascia processing (co-extrusion; thermoforming and injection molding) and validation testing of the film.
Technical Paper

Laminar Flow Whistle on a Vehicle Side Mirror

2007-04-16
2007-01-1549
In the development of several outside mirror designs for vehicles, a high frequency noise (whistling) phenomenon was experienced. First impression was that this might be due to another source on the vehicle (such as water management channels) or a cavity noise; however, upon further investigation the source was found to be the mirror housing. This “laminar whistle” is related to the separation of a laminar boundary layer near the trailing edges of the mirror housing. When there is a free stream impingement on the mirror housing, the boundary layer starts out as laminar, but as the boundary layer travels from the impingement point, distance, speed, and roughness combine to trigger the transition turbulent. However, when the transition is not complete, pressure fluctuations can cause rapidly changing flow patterns that sound like a whistle to the observer. Because the laminar boundary layer has very little energy, it does not allow the flow to stay attached on curved surfaces.
Journal Article

Measurement of Smoke Particle Size under Low-Gravity Conditions

2008-06-29
2008-01-2089
Smoke detection experiments were conducted in the Microgravity Science Glovebox (MSG) on the International Space Station (ISS) during Expedition 15 in an experiment entitled Smoke Aerosol Measurement Experiment (SAME). The preliminary results from these experiments are presented. In order to simulate detection of a prefire overheated-material event, samples of five different materials were heated to temperatures below the ignition point. The smoke generation conditions were controlled to provide repeatable sample surface temperatures and air flow conditions. The smoke properties were measured using particulate aerosol diagnostics that measure different moments of the size distribution. These statistics were combined to determine the count mean diameter which can be used to describe the overall smoke distribution.
Technical Paper

Model Based Development and Auto Testing: A Robust Approach for Reliable Automotive Software Development

2006-04-03
2006-01-1420
Automotive electronics and software is getting complex day by day. More and more features and functions are offered and supported by software in place of hardware. Communication is carried out on the CAN bus instead of hard wired circuits. This architectural transition facilitates lots of flexibility, agility and economy in development. However, it introduces risk of unexpected failures due to insufficient testing and million of possible combinations, which can be created by users during the life time of a product. Model based development supports an effective way of handling these complexities during simulation and also provide oracle for its validation. Based on priorities and type of applications, test vectors can be auto generated and can be used for formal verification of the models. These auto-generated test vectors are valuable assets in testing and can be effectively reused for target hardware (ECU) verification.
Technical Paper

New Methods for Emission Analyzer Calibrations

1999-03-01
1999-01-0153
Traditionally, vehicle emission testing has used non-intelligent analyzers to meet government-regulated standards. Typically, these instruments would provide a 0 to 5-volt signal to a central test cell computer which would then handle all calibrations including analyzer linearization, zero and span corrections, stability checks, time delays, and sample readings. Modern gas analyzers now contain intelligence within each individual analyzer; this has caused the calibration methods to change dramatically. New methods were developed in the bench control system to take advantage of the intelligence of the analyzers by creating a distributed control architecture. The zeroing, spanning, and linearization methods are quite different from the previous protocols. The results, however, will provide more accurate reading to be used in calculating vehicle emissions.
X