Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Alternative Fuel Transit Bus Evaluation Program Results

1996-05-01
961082
The objective of this program, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide an unbiased and comprehensive comparison of transit buses operating on alternative fuels and diesel fuel. The information for this comparison was collected from eight transit bus sites. The fuels studied are natural gas (CNG and LNG), alcohol (methanol and ethanol), biodiesel (20 percent blend), propane (only projected capital costs; no sites with heavy-duty propane engines were available for studying operating experience), and diesel. Data was collected on operations, maintenance, bus equipment configurations, emissions, bus duty cycle, and safety incidents. Representative and actual capital costs were collected for alternative fuels and were used as estimates for conversion costs. This paper presents preliminary results.
Technical Paper

Applications and Benefits of Catalytic Converter Thermal Management

1996-05-01
961134
A catalytic converter thermal management system (TMS) using variable-conductance vacuum insulation and phase-change thermal storage can maintain the converter temperature above its operating temperature for many hours, allowing most trips to begin with minimal “cold-start” emissions. The latest converter TMS prototype was tested on a Ford Taurus (3.0 liter flex-fuel engine) at Southwest Research Institute. Following a 24-hour soak, the FTP-75 emissions were 0.031, 0.13, and 0.066 g/mile for NMHC, CO, and NOx, respectively. Tests were also run using 85% ethanol (E85), resulting in values of 0.005, 0.124, and 0.044 g/mile, and 0.005 g/mile NMOG. Compared to the baseline FTP levels, these values represent reductions of 84% to 96% for NMHC, NMOG, and CO.
Technical Paper

Conceptual Design of the South Coast Alternative Motor Fuels Demonstration Project

1991-11-01
912665
The conceptual design for a large scale, alternative motor fuels demonstration using delivery vans in the Los Angeles area is described. Vehicles built by Chrysler, Ford, and General Motors will be demonstrated on compressed natural gas, methanol (M-85), ethanol blend, reformulated gasoline, and liquefied petroleum gas. Control vehicles will run on unleaded gasoline. About 20 vehicles will run on each fuel. A smaller number of electric vehicles from other sources will also be demonstrated. Data will be collected over a 24-month period on speciated emissions, safety, performance, reliability, maintenance, and durability. An economic assessment of the use of each of the fuels will be performed from a fleet operator's perspective. Federal Express Corporation will serve as the host fleet.
Technical Paper

Design of a Variable-Conductance Vacuum Insulation

1994-03-01
940315
This paper describes one approach to the design of a variable-conductance vacuum insulation. In this design, the vacuum insulation consists of a permanently sealed, thin sheet steel, evacuated envelope of whatever geometry is required for the application. The steel envelope is supported internally against the atmospheric pressure loads by an array of discrete, low-conductance, ceramic supports, and radiative heat transfer is blocked by layers of thin metal radiation shields. Thermal conductance through this insulation is controlled electronically by changing the temperature of a small metal hydride connected to the vacuum envelope. The hydride reversibly absorbs/desorbs hydrogen to produce a hydrogen pressure typically within the range from less than 10-6 to as much as 1 torr. Design calculations are compared with results from laboratory tests of bench scale samples, and some possible automotive applications for this variable-conductance vacuum insulation are suggested.
Technical Paper

Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas

1996-05-01
961092
The first round of Federal Test Procedure (FTP) emissions testing of variable-fuel ethanol vehicles from the U.S. Federal fleet was recently completed. The vehicles tested include 21 variable-fuel E85 1992 and 1993 Chevrolet Lumina sedans and an equal number of standard gasoline Luminas. Results presented include a comparison of regulated exhaust and evaporative emissions and a discussion of the levels of air toxics, as well as the calculated ozone-forming potential of the measured emissions. Two private emissions laboratories tested vehicles taken from the general population of Federal fleet vehicles in the Washington, D.C., and Chicago metropolitan regions. Testing followed the standard U.S. Environmental Protection Agency's FTP and detailed fuel changeover procedures as developed in the Auto/Oil Air Quality Improvement Research Program.
Technical Paper

Survey of Potential Safety Issues with Hydrogen-Powered Vehicles

2006-04-03
2006-01-0327
Hydrogen-powered vehicles offer the promise of significantly reducing the amount of pollutants that are expelled into the environment on a daily basis by conventional hydrocarbon-fueled vehicles. While very promising from an environmental viewpoint, the technology and systems that are needed to store the hydrogen (H2) fuel onboard and deliver it to the propulsion system are different from what consumers, mechanics, fire safety personnel, the public, and even engineers currently know and understand. As the number of hydrogen vehicles increases, the likelihood of a rollover or collision of one of these vehicles with another vehicle or a barrier will also increase.
X