Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A Computerized Optimization Method Of Engine Mounting System

This paper presents a method for optimization design of an engine mounting system subjected to some constraints. The engine center of gravity, the mount stiffness rates, the mount locations and/or their orientations with respect to the vehicle can be chosen as design variables, but some of them are given in advance or have limitations because of the packaging constraints on the mount locations, as well as the individual mount rate ratio limitations imposed by manufacturability. A computer program, called DynaMount, has been developed that identifies the optimum design variables for the engine mounting system, including decoupling mode, natural frequency placement, etc.. The degree of decoupling achieved is quantified by kinetic energy distributions calculated for each of the modes. Several application examples are presented to illustrate the validity of this method and the computer program.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Experimental Determination of an Engine's Inertial Properties

Determination of an engine's inertial properties is critical during vehicle dynamic analysis and the early stages of engine mounting system design. Traditionally, the inertia tensor can be determined by torsional pendulum method with a reasonable precision, while the center of gravity can be determined by placing it in a stable position on three scales with less accuracy. Other common experimental approaches include the use of frequency response functions. The difficulty of this method is to align the directions of the transducers mounted on various positions on the engine. In this paper, an experimental method to estimate an engine's inertia tensor and center of gravity is presented. The method utilizes the traditional torsional pendulum method, but with additional measurement data. With this method, the inertia tensor and center of gravity are estimated in a least squares sense.
Technical Paper

Improving the Performance of Rolling Element Bearings with Nanocomposite Tribological Coatings

This study summarizes the development, characterization, and application of nanocomposite tribological coatings on rolling element bearings. Nanocomposite coatings consisting of nanocrystalline metal carbides embedded in amorphous hydrocarbon or carbon matrices (MC/aC:H or MC/aC) have been used to increase the fatigue life under boundary layer lubrication, provide debris tolerance, eliminate false brinelling, increase the operational speed, decrease the friction, and provide oil-out protection to rolling element bearings. MC/aC:H coatings are applied by magnetron sputtering at substrate temperature less than 180 °C, have small friction coefficients, high fracture strength, and can have hardness and modulus values twice and half that of carburized steel, respectively.
Technical Paper

Side Window Buffeting Characteristics of an SUV

Buffeting is a wind noise of high intensity and low frequency in a moving vehicle when a window or sunroof is open and this noise makes people in the passenger compartment very uncomfortable. In this paper, side window buffeting was simulated for a typical SUV using the commercial CFD software Fluent 6.0. Buffeting frequency and intensity were predicted in the simulations and compared with the corresponding experimental wind tunnel measurement. Furthermore, the effects of several parameters on buffeting frequency and intensity were also studied. These parameters include vehicle speed, yaw angle, sensor location and volume of the passenger compartment. Various configurations of side window opening were considered. The effects of mesh size and air compressibility on buffeting were also evaluated. The simulation results for some baseline configurations match the corresponding experimental data fairly well.
Technical Paper

Spindle-Based Engine Mount Load Analysis - Prediction and Correlation

Engine mount loads are mostly measured from load cells or calculated from measured engine accelerations. This paper introduces an innovative new method to calculate engine mount loads from measured spindle loads. The method starts from calculating suspension attachment loads to body or chassis frame, then calculating engine center of gravity accelerations, and finally calculating engine mount loads from engine inertia forces. This spindle-based engine mount load analysis method is validated by a vehicle with measurements by wheel force transducers and engine load cells. The correlation includes load time history, peak-to-peak load range, and pseudo-damage values. The correlations show good comparisons between measured and predicted in all the categories, especially for the high load components. It is recommended to implement this method in early vehicle design phases.
Technical Paper

The Impact of Some Gear Lubricants on the Surface Durability of Rolling Element Bearings

The additive chemistry of some gear lubricants can have a major impact on the surface durability of rolling element bearings (1). Lubricant formulation has been slanted heavily toward protecting gear concentrated contacts from galling and wear. As such, much of the performance differentiation of lubricants has been dependent on highly accelerated, standardized laboratory tests related to gears. Methods have been proposed to evaluate and quantify a lubricant's performance characteristics as they relate to rolling element bearings (2). Results from several lubricant performance evaluations are presented. The implications of these findings suggest that the detrimental performance effects on rolling element bearings need further fundamental study by the lubricant industry.
Technical Paper

Timken: From Missouri to Mars – The History of the Future

The 100-year saga of The Timken Company is a testament to the enduring power of innovation, grit and periodic self-renewal. It is the story of a quest to solve one of industry's oldest, most limiting and expensive challenges: friction. Today's Timken combines materials science with bearing technology to produce products that range from a half ounce to nine tons and help power and control applications that span disk drives, drilling rigs, dental drills and rolling mills. Today's automotive bearing is less than half the size and 90 percent lighter than its ancestor - and carries twice the load.
Technical Paper

USCAR Traction Test Methodology for Traction-CVT Fluids

A traction test machine, developed for evaluation of traction-CVT fluids for the automotive consortium, USCAR, provides precision traction measurements to stresses up to 4 GPa. The high stress machine, WAMhs, provides an elliptical contact between AISI 52100 steel roller and disc specimens. Machine stiffness and positioning technology offer precision control of linear slip, sideslip and spin. A USCAR traction test methodology includes entrainment velocities from 2 to 10 m/sec and temperatures from -20°C to 140°C. The purpose of the USCAR machine and test methodology is to encourage traction fluid development and to establish a common testing approach for fluid qualification. The machine utilizes custom software, which provides flexibility to conduct comprehensive traction fluid evaluations.