Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

New Type of Diesel Engine by Impingement of Fuel Jet (OSKA-D)

1990-09-01
901618
The new type of Diesel combustion engine has been developed. The new Idea Incorporates an impingement part in the central piston cavity. The fuel jet is injected against the impingement part, spreads and form fuel-air mixture. Single hole fuel injection nozzle is used and the relatively low opening pressure is needed. Intake air swirl is not needed. The re-entrant type combustion chamber is employed to get a relatively strong squish speed. Experimental with single cylinder 4 stroke prototype test engine showed that the brake mean effective pressure was 0.82 MPa and the maximum net specific fuel consumption was 220 g/kW.h. The NOx and smoke emissions was reduced compared with the conventional DI Diesel engine. The authors have developed a new type of Direct Injection Stratified Charge SI engine called “Direct Fuel Injection Impingement Diffusion Stratified Charge System” (hereafter called OSKA).
Technical Paper

Performance of Glow Plug Assisted Direct Injection Methanol Engine by Impingement of Fuel Jet(OSKA-F)

1991-09-01
911769
The authors previously reported the performance of the “Stratified Charge Methanol Engine by Impingement of Fuel Jet (OSKA System) with Spark Plug Ignition.” In that report, the impinging part was installed in the center of the piston cavity and a spark plug was used for ignition. In this report, the impinging part is installed on the cylinder head and a glow plug is used for ignition. A single-hole fuel injector (throttle type) is used. The centerline of the fuel injector coincides with that of the impinging part. A relatively low opening pressure (7.MPa) of the fuel injector is needed for this OSKA system. The fuel is injected against the impinging part, spreads and forms the fuel-air mixture. A glow plug is located just beside the impinging part. Experiments with a single-cylinder 4-stroke cycle prototype engine (bore × stroke = 94 × 90 mm) showed that the maximum Brake Mean Effective Pressure (BMEP) was 1.04 MPa and the Maximum Brake Thermal Efficiency was 41.9 % (429.6 g/kW.h).
X