Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2-D Temperature Measurements of Unburned Gas Mixture in an Engine by Two-line Excitation LIF Technique

2006-10-16
2006-01-3336
Two-line excitation LIF (Laser-Induced Fluorescence) technique for 2-dimensional temperature measurements in an engine cylinder before ignition is presented. From the fundamental examinations, the combination of toluene tracer with a pair of excitation lines of 248nm and 266nm has been selected because of the high LIF intensity ratio and closer excitation wavelengths. In-cylinder thermometry is conducted using a visualized single cylinder spark ignition engine both in PFI (port-fuel-injection) and DI (direct-injection) operation. The accuracy of this technique is determined through the homogeneous PFI experiment. Temperature and fuel distribution in unburned mixture are measured simultaneously in DI operation. It exists a strong correlation between equivalence ratio and temperature inside the mixture. Temperature in the fuel rich region is lower than in the fuel lean region.
Technical Paper

A Low-Speed In-Vehicle Network for Body Electronics

1992-02-01
920231
The authors developed a low-speed in-vehicle network for the body control system on passenger cars, where the most remarkable effects to reduce the number of wire harnesses could be expected. First, the authors analyzed the body control system to clarify the specifications required to build a low-speed in-vehicle network. Then the authors worked out optimum communication protocol, placing emphasis on cost reduction which is the key to expanding the applications of the low-speed in-vehicle network over wider fields. The low-speed in-vehicle network was evaluated for its performance through simulation and on-vehicle tests, and proved the practical validity of the concept. It was also verified that introducing the low-speed in-vehicle network has a satisfactory effect to reduce the number of wire harnesses.
Technical Paper

A Method for Suppressing Formation of Deposits on Fuel Injector for Direct Injection Gasoline Engine

1999-10-25
1999-01-3656
Our concern was with the phenomenon of the fuel flow rate change in the injector due to deposit formation in the direct injection gasoline engine. The fundamental factors in the deposit formation on the nozzle were investigated, and engine dynamometer tests were performed. It was clarified that the residual fuel in the nozzle hole should be kept in a liquid state so that deposit precursors could be washed away by fuel injections. As a consequence, the nozzle temperature had to be below the 90 vol. % distillation temperature of the fuel, which was the most important index to suppress the deposit formation.
Technical Paper

A Molecular Dynamics Analysis of the Traction Fluids

2007-04-16
2007-01-1016
Non-equilibrium all-atom MD simulations are used to study the traction properties of hydrocarbon fluids. A fluid layer is confined between two solid Fe plates under the constant normal force of 1.0 GPa. Traction simulations are performed by applying a relative sliding motion to the Fe plates. Shear behaviors of nine hydrocarbon fluids are simulated on a sufficiently large film thickness of 6.7 nm, and succeeded in reproducing the order of the experimental traction coefficients. The dynamic mechanism of the momentum transfer on layers of fluid molecules are analyzed focusing on the intermolecular interactions (density profile, orientation factor, pair-correlation function) and intramolecular interactions (intramolecular interaction energy, conformation change of alicyclic ring). In contrast to the case of n-hexane, which shows low traction due to a fragile chain-like interaction, other mechanisms are obtained in the high traction molecules of cyclohexane, dicyclohexyl and santotrac 50.
Technical Paper

A New Ambulatory Arousal Level Monitor Utilizing the Skin Potential Level

1992-02-01
920214
A reduction in the human arousal level can often leads to traffic or commondaily accidents. Hence, it is important to accurately detect the human arousal level. However, it is not easy to set up a method of monitoring this. The method introduced in this paper focusses on utilizing the skin potential level (SPL). The authors have developed and designed an ambulatory wristwatch type arousal level monitor based on the SPL. The monitor incorporates a new porous electrode with a dry conditioned surface, and adopts a new algorithm to detect relative changes in the SPL.
Journal Article

A New Generation of Optically Accessible Single-Cylinder Engines for High-speed and High-load Combustion Analysis

2011-08-30
2011-01-2050
Over the last few decades, in-cylinder visualization using optically accessible engines has been an important tool in the detailed analysis of the in-cylinder phenomena of internal combustion engines. However, most current optically accessible engines are recognized as being limited in terms of their speed and load, because of the fragility of certain components such as the elongated pistons and transparent windows. To overcome these speed and load limits, we developed a new generation of optically accessible engines which extends the operating range up to speeds of 6000 rpm for the SI engine version, and up to in-cylinder pressures of 20 MPa for the CI engine version. The main reason for the speed limitation is the vibration caused by the inertia force arising from the heavy elongated piston, which increases with the square of the engine speed.
Technical Paper

A New Material Recycling Technology for Automobile Rubber Waste

2003-10-27
2003-01-2775
A new material recycling technology for crosslinked rubber was developed using the continuous reactive processing method. In this process of producing reclaimed rubber, breakage of crosslinking points in the crosslinked rubber occurs selectively under the controls of shear stress, reaction temperature, and internal pressure in a modular screw type reactor. Deodorization during the process has also become possible by a newly developed method. The reclaimed rubber obtained from rubber waste generated from both automobile manufacturing products and post-consumer products shows excellent mechanical properties applicable to new rubber compounds. Furthermore, an enhanced rubber recycling process for producing thermoplastic elastomer (TPE) based on rubber waste has been established. The obtained TPE exhibits highly recoverable rubber elasticity and mechanical properties comparable to commercial TPE.
Technical Paper

A New Method of Engine Sound Design for Car Interior Noise Using a Psychoacoustic Index

2004-03-08
2004-01-0406
In this study, a new practical design method (tool) for engine sound quality in a car interior is proposed. The tool can automatically create the target interior sound using the psychoacoustic index ‘powerfulness’ based on subjective tests. Moreover, it can calculate the intake noise characteristic to create the target interior sound and select the suitable intake specification from the prepared database. By using this method sound engineering can be easily and effectively carried out without manufacturing an experimental car.
Technical Paper

A New Method of Reliability Testing for C-MOS VLSI's Evaluation

1987-11-08
871292
This paper presents a new method of reliability testing for C-MOS VLSI's evaluation, i.e. a means to verify the future reliability prediction. In this method, VLSI's under testing are stressed by soft x-ray irradiation and subsequently annealed at moderate temperature and then they are classified according to the time required to recover the computer action of VLSI's to the previous level. This method offers a new technology for future reliability testing in higher accuracy of C-MOS VLSI's used in automotive electronics system compared to the conventional technique so called burn-in.
Technical Paper

A New Tooth Flank Form to Reduce Transmission Error of Helical Gear

2000-03-06
2000-01-1153
Transmission error is the main cause of gear noise in automobile transmissions, and recently can be estimated by numerical analysis [1]. First, in this report, we establish the accurate numerical analysis of transmission error by using FE analysis and Hertz's contact analysis of gear tooth stiffness. Secondly, on the basis of the established numerical analysis, we develop a new tooth flank form to reduce transmission error. The new tooth flank form aims to ensure the coincidence of meshing stiffness at all meshing positions. Finally, a validation test using an experimental prototype is performed, and we confirm that the estimated effect by the new tooth flank form has been obtained.
Technical Paper

A Study on Natural Gas Fueled Homogeneous Charge Compression Ignition Engine - Expanding the Operating Range and Combustion Mode Switching

2007-04-16
2007-01-0176
Natural gas homogeneous charge compression ignition (HCCI) engines require high compression ratios and intake air heating because of the high auto-ignition temperature of natural gas. In the first study, the natural gas fueled HCCI combustion with internal exhaust gas recirculation (EGR) was achieved without an intake air heater. The effects of the combustion chamber configuration, turbocharging, and external EGR were investigated for expanding the operating range. As a result, it was cleared that the combination of internal / external EGR and turbocharging is effective for expanding the HCCI operational range toward high loads. Meanwhile, the HCCI combustion characteristics at high engine speeds were unstable because of an insufficient reaction time for auto-ignition. Although the engine operation with a richer air-fuel ratio was effective for improving the combustion stability, the combustion noise (CN) was at an unacceptable level.
Technical Paper

A tibial mid-shaft injury mechanism in frontal automotive crashes

2001-06-04
2001-06-0241
Lower extremity injuries in frontal automotive crashes usually occur with footwell intrusion where both the knee and foot are constrained. In order to identify factors associated with tibial shaft injury, a series of numerical simulations were conducted using a finite element model of the whole human body. These simulations demonstrated that tibial mid-shaft injuries in frontal crashes could be caused by an abrupt change in velocity and a high rate of footwell intrusion.
Technical Paper

Acoustic Noise Reduction in Automobile Alternator by Constrained Layer Damping of the Stator

1992-02-01
920407
1 Attenuation of acoustic noise from automobile components is important for passenger comfort. Since the alternator is one of the major sources of noise, many manufacturers have studied the various mechanisms which generate noise within an alternator as well as the methods to reduce the noise level. This paper presents the dynamic properties of the alternator with respect to the acoustic noise during current generation, and introduces a vibration damping structure based on experimental modal analysis. Rotating magnetic forces in a magnetic circuit (stator and rotor) can excite numerous structural resonances, resulting in acoustic noise. A modal analysis performed on the major magnetic circuit of the alternator (Nippondenso Co., Ltd.) revealed that the stator has elliptic, triangular and rectangular mode shapes in the radial coordinate plane, while the rotor does not have any significant resonances in the same 0 - 3 kHz region.
Technical Paper

Advanced In-Line Pump for Medium-Duty Diesel Engines to Meet Future Emissions Regulations

1991-02-01
910182
This paper describes the Nippondenso in-line pump system designed for U.S. 1991 emissions regulation for medium duty diesel engines. With the combined use of the further improved in-line pump, NB-S and the multi-hole nozzle with a smaller orifice diameter, the required injection pressure of 100 MPa to 120 MPa at the nozzle can be achieved. However, some problems to be resolved exist in the subject fuel injection system: (1) secondary injection, (2) cavitation erosion of injection pipe, (3) higher pressure sealing of fuel, (4) undesirable fuel delivery curve vs. pump speed (called “Trumpet Shape” fuel delivery curve) Thus technical measures to cope with those problems are explained in details.
Technical Paper

Air Conditioning System for Electric Vehicle

1996-02-01
960688
The electricity stored in the battery is the only source of energy driving an electric vehicle (EV). Therefore, the target of the air conditioning system for EVs is to cool and heat the air in the cabin and demist the wind shield using a small power consumption. We have developed a dehumidifying heat pump system that consists of an interior unit constructed to separate the recirculation air flow and fresh air flow, an exterior unit capable of controlling the absorption and radiation of heat, and an inverter-controlled, electric-driven compressor. The results of an experiment using this system proved that it could provide comfortable cabin air and good visibility through the wind shield with small power consumption at ambient temperatures ranging from -10°C to 40°C.
Technical Paper

Air Purification Technology for Cabin

1996-02-01
960942
To improve vihicle compartment comfort, there has been a great demand for the development of odor filters which reduce odors, especially external diesel exhaust odors. Therefore, in efficiently developing cabin air filter combining dust removal and deodorant functin, a quantitative formula which enables acquisition of the correlation between sensory evaluation values and instrumental analysis values of odors has been designed and verified. We developed a deodorizing filter that effectively deodorized with minimal use of deodorant, combined with a dust filter based on these figures, to develop a high-performance air conditioning cabin air filter.
Technical Paper

Air Purification and Fragrance Control

1993-03-01
930013
Environmental control of the passenger compartment has become increasingly important and sophisticated. One major consideration of interior comfort is clean, healthful, aromatic air. Accordingly, two new products were developed to increase the dust removing and deodorizing effects. These are the “Air Purifier” and the air conditioner ventilation filter called the “Air Refiner”. The Air Purifier affects the air inside the vehicle, and the Air Refiner affects the air from outside the vehicle. Remarkable effects are achieved by employing a newly developed material called “Impregnated Activated Carbon Fiber (IACF)” which is utilized in both the Air Purifier and the Air Refiner. In addition to the air purification system, a new fragrance control system called the “Aroma Controller” was developed. The Aroma Controller allows the user to select from three aromatic fragrances. The fragrance is emitted intermittently by way of “1/f fluctuation control” via microcomputer control.
Technical Paper

An Intelligent Catalyst

2001-03-05
2001-01-1301
The catalyst of the crystalline ceramics known as a perovskite-type oxide was designed and controlled at the atomic level in order to create a new function for self-regeneration of precious metals in a usage ambience without auxiliary treatment. We have already reported that a catalyst with Pd supported on the perovskite-type oxide has higher activity than a catalyst with Pd supported on alumina. It was also found that Pd supported on the perovskite catalyst is finely dispersed [1, 2 and 3] The object of this study was to investigate the mechanism of self-regeneration by using hyper-analytical facilities. XAFS analysis, at SPring-8 (8 GeV), revealed that Pd is in six-fold coordinations with oxygen in a perovskite crystal, which indicating that Pd occupies the B site of the unit formula of ABO3 in the perovskite crystal structure under oxidation atmosphere.
Technical Paper

Analysis of Diesel Smoke Emission at Low Engine Speed

1995-02-01
950084
In recent years, diesel engine exhaust gas regulations become more severe due to environmental concerns. Especially, particulate reduction is one of the biggest concern, and the reduction through high injection pressure has been studied.(1), (2) and (3) However, much is not yet known about the influence of changes in fuel flow inside the nozzle tip on atomization and engine performance, and there would exist a lot of room for exhaust gas reduction through the nozzle modification. In this research we found that changing the shape of the nozzle tip showed a remarkable difference in the smoke emission at low engine speed, analysis showed that difference in the flow rate at the nozzle orifice cause difference in the fuel spray droplet size and therefore the difference in the smoke emission.
Technical Paper

Analysis of Friction Coefficient Variation with Moisture between Friction Surfaces

2016-04-05
2016-01-0411
If a vehicle is left in a humid environment, the coefficient of friction between the brake pads and discs increases, generating a discomforting noise during braking called brake squeal. It is assumed that this increase in the coefficient of friction in a humid environment is the effect of moisture penetrating between the brake friction surfaces. Therefore, this paper analyzes the factors causing coefficient of friction variation with moisture between the friction surfaces by dynamic observation of these surfaces. The observation was achieved by changing the disc materials from cast iron to borosilicate glass. One side of the glass brake disc was pushed onto the brake pad and the sliding surface was observed from the opposite side by a charge coupled device (CCD) camera. First, a preliminary test was carried out in a dry state using two pad materials with different wear properties to select the appropriate pad for observing the friction surfaces.
X