Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Fundamental Study on External Engine Noise Propagation from Light Vehicles

1978-02-01
780173
In this paper, we have analyzed the problem of the engine noise propagation and have classified that there is a fundamental relationship between exterior noise and structural design. In the case of light vehicles, we have isolated the following 2 factors in structural design which have a direct bearing on exterior noise. (1) The layout and the area of exposed openings in the engine room. (2) The ability of the engine room to absorb noise. In conclusion we suggest comprehensive approach to the problem of automotive noise reduction.
Technical Paper

A Lubrication Analysis of Multi Link VCR Engine Components using a Mixed Elasto-Hydrodynamic Lubrication Theory Model

2009-04-20
2009-01-1062
Research is under way on an engine system [1] that achieves a variable compression ratio using a multiple-link mechanism between the crankshaft and pistons for the dual purpose of improving fuel economy and power output. At present, there is no database that allows direct judgment of the feasibility of the specific sliding parts in this mechanism. In this paper, the feasibility was examined by making a comparison with the sliding characteristics and material properties of conventional engine parts, for which databases exist, and using evaluation parameters based on mixed elasto-hydrodynamic (EHD) lubrication calculations. In addition, the innovations made to the mixed EHD calculation method used in this study to facilitate calculations under various lubrication conditions are also explained, including the treatment of surface roughness, wear progress and stiffness around the bearings.
Technical Paper

A Method for Predicting Connecting Rod Bearings Reliability Based on Seizure and Wear Analysis

1988-02-01
880568
Maintaining reliability of the connecting rod bearing is a very important subject, and the following is a problem that needs to be overcome. Predicting reliability has generally depended on minimum oil film thickness (M.O.F.T), but recently, the engines of passenger cars which have greater power and speed potential than conventional ones are sometimes run beyond their M.O.F.T. limit (a degree of roughness around the crank shaft's axis.) In such a case, it is so difficult to predict reliability according to M.O.F.T., that we need a new index which directly shows seizure and wear. For this purpose, we found that the crank shaft pin temperature can be a key cause of seizure and wear according to an analysis of the relationship between its temperature and the seizure and wear caused intentionally. Using this method, we confirmed that the combination of bearing and crank shaft materials is very important for preventing seizure and wear.
Technical Paper

A New Approach to Finding Optimum Planetary Gear Trains for Automatic Transmissions

1993-03-01
930676
There has been a growing need to develop more compact automatic transmissions with a greater number of speeds for better fuel economy and better driveability. This study investigated a method for determining suitable planetary gear trains for today's transmissions. A computer program has been developed for application to five-speed transmissions consisting of two planetary gearsets. By analyzing various gear train possibilities, the program can identify which gearsets are suitable for different conditions, including the number of speeds, the number of binding elements, topological suitability and other factors.
Technical Paper

A New Nissan 3.0-liter V-6 Twin-cam Twin-turbo Engine with Dual Intake and Exhaust Systems

1990-02-01
900649
As a new generation sports car engine to lead the field in the 1990s, a 3.0 liter, 60°V, type 6 cylinder, 4 cam, 24 valve engine (VG30DETT) has been developed to achieve the utmost in high performance levels and reliability. it has been mounted on the new model 300ZX and announced in the North America and Japanese markets. The VG30DETT engine is based on the previous VG30DE engine (the engine mounted on the former model 300ZX designed for the market in Japan). The main components, the major driving and the lubrication systems including such parts as the crank shaft,con-rod, cylinder block, piston, exhaust manifold, and oil pan of the VG30DE were thoroughly reviewed and revised. The VG30DETT engine is the result of redesigning the structure of the engine itself and its parts and components to assure durability under, high-level performance requirements.
Technical Paper

A New Quasi-Dimensional Combustion Model Applicable to Direct Injection Gasoline Engine

2010-04-12
2010-01-0544
Gasoline engines employ various mechanisms for improvement of fuel consumption and reduction of exhaust emissions to deal with environmental problems. Direct fuel injection is one such technology. This paper presents a new quasi-dimensional combustion model applicable to direct injection gasoline engine. The Model consists of author's original in-cylinder turbulence and mixture homogeneity sub model suitable for direct fuel injection conditions. Model validation results exhibit good agreement with experimental and 3D CFD data at steady state and transient operating conditions.
Technical Paper

A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation

2001-03-05
2001-01-0250
An engine cycle simulation code with detailed chemical kinetics has been developed to study Homogeneous Charge Compression Ignition (HCCI) combustion with hydrogen as the fuel. In order to attain adequate combustion duration, resulting from the self-accelerating nature of the chemical reaction, fuel and temperature inhomogeneities have been brought to the calculation by considering the combustion chamber to have various temperature and fuel distributions. Calculations have been done under various conditions including both perfectly homogeneous and inhomogeneous cases, changing the degree of inhomogeneity. The results show that intake gas temperature is more dominant on ignition timing of HCCI than equivalence ratio and that there is a possibility to control HCCI by introducing appropriate temperature inhomogeneity to in-cylinder mixture.
Technical Paper

A Portable Fast Response Air-Fuel Ratio Meter Using an Extended Range Oxygen Sensor

1988-02-01
880559
The method for measuring air-fuel ratio is generally based on analysis of the exhaust gas components and its calculations. A new instrument has been developed which uses this method, but it attaches an oxygen sensor for exhaust gas analysis to the exhaust pipe and calculates the air-fuel ratio directly from the sensor output using a microprocessor. The response time of this instrument is 100 milliseconds and because it does not require an exhaust gas sampling system its weight is only 2.5 kg. This paper describes the operation theory, construction and characteristics of this instrument, as well as the results of air-fuel ratio of measurements on engines and vehicles using this instrument in a transient state.
Journal Article

A Study of Combustion Technology for a High Compression Ratio Engine: The Influence of Combustion Chamber Wall Temperature on Knocking

2016-04-05
2016-01-0703
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio is an example of a technology for improving the thermal efficiency of gasoline engines. A significant issue of a high compression ratio engine for improving fuel economy and low-end torque is prevention of knocking under a low engine speed. Knocking is caused by autoignition of the air-fuel mixture in the cylinder and seems to be largely affected by heat transfer from the intake port and combustion chamber walls. In this study, the influence of heat transfer from the walls of each part was analyzed by the following three approaches using computational fluid dynamics (CFD) and experiments conducted with a multi-cooling engine system. First, the temperature rise of the air-fuel mixture by heat transfer from each part was analyzed.
Technical Paper

A Study of Heat Rejection and Combustion Characteristics of a Low-temperature and Pre-mixed Combustion Concept Based on Measurement of Instantaneous Heat Flux in a Direct-Injection Diesel Engine

2000-10-16
2000-01-2792
There have been strong demands recently for reductions in the fuel consumption and exhaust emissions of diesel engines from the standpoints of conserving energy and curbing global warming. A great deal of research is being done on new emission control technologies using direct-injection (DI) diesel engines that provide high thermal efficiency. This work includes dramatic improvements in the combustion process. The authors have developed a new combustion concept called Modulated Kinetics (MK), which reduces smoke and NOx levels simultaneously by reconciling low-temperature combustion with pre-mixed combustion [1, 2]. At present, research is under way on the second generation of MK combustion with the aim of improving emission performance further and achieving higher thermal efficiency [3]. Reducing heat rejection in the combustion chamber is effective in improving the thermal efficiency of DI diesel engines as well as that of MK combustion.
Technical Paper

A Study of a DISI Engine with a Centrally Located High-pressure Fuel Injector

2004-10-25
2004-01-2944
Vehicle manufacturers developed two mixture formation concepts for the first generation of gasoline direct-injection (GDI) engines. Both the wall-guided concept with reverse tumble air motion or swirl air motion and the air-guided concept with tumble air motion have the fuel injector located at the side of the combustion chamber between the two intake ports. This paper proposes a new GDI concept. It has the fuel injector located at almost the center of the combustion chamber and with the spark plug positioned nearby. An oval bowl is provided in the piston crown. The fuel spray is injected at high fuel pressures of up to 100 MPa. The spray creates strong air motion in the combustion chamber and reaches the piston bowl. The wall of the piston bowl changes the direction of the spray and air motion, producing an upward flow. The spray and air flow rise and reach the spark plug.
Technical Paper

A Study of a Gasoline-fueled HCCI Engine∼Mode Changes from SI Combustion to HCCI Combustion∼

2008-04-14
2008-01-0050
Since the stable operating region of a gasoline-fueled HCCI engine is limited to the part load condition, a mode change between SI and HCCI combustion is required, which poses an issue due to the difference in combustion characteristics. This report focuses on the combustion characteristics in the transitional range. The combustion mode in the transitional range is investigated by varying the internal EGR rate, intake air pressure, and spark advance timing in steady-state experiments. In this parametric study, stable SI-CI combustion is observed. This indicates that the combustion mode transition is possible without misfiring or knocking, regardless of the speed of variable valve mechanism which includes VVA, VVEL, VTEC, VVL and so on, though the response of intake air pressure still remains as a subject to be examined in the actual application.
Journal Article

A Study of the Knocking Mechanism in Terms of Flame Propagation Behavior Based on 3D Numerical Simulations

2009-04-20
2009-01-0699
The aim of this study is to gain a better understanding of the mechanism of knocking with respect to flame propagation behavior based on 3D simulations conducted with the Universal Coherent Flamelet Model. Flame propagation behavior under the influence of in-cylinder flow was analyzed on the basis of the calculated results and experimental visualizations. Tumble and swirl flows were produced in the cylinder by inserting various baffle plates in the middle of the intake port. A comparison of the measured and calculated flame propagation behavior showed good agreement for various in-cylinder flow conditions. The results indicate that in-cylinder flow conditions vary the flame propagation shape from the initial combustion period and strongly influence the occurrence of knocking.
Technical Paper

A Study on Engine Bearing Performance Focusing on the Viscosity-Pressure Characteristic of the Lubricant and Housing Stiffness

1996-05-01
961144
It is important to understand the influence of housing stiffness on bearing performance, particularly for the connecting rod bearings of automotive engines. It is known that the engine lubricant shows a piezoviscous characteristic whereby its viscosity changes under the influence of pressure. Engine bearings under a heavy load are apt to be influenced in this way. In this study, the effects of connecting rod stiffness and lubricant piezoviscosity on bearing performance were examined by elastohydrodynamic lubrication (EHL) analysis under conditions corresponding to the high-speed operation of an actual engine. The results indicated that under such heavy load conditions housing stiffness greatly affects friction loss because of lubricant piezoviscosity. It was also found that the piezoviscosity of the lubricant has a large effect on bearing performance, as does its viscosity under atmospheric pressure.
Technical Paper

A Study on Engine Bearing Wear and Fatigue Using EHL Analysis and Experimental Analysis

1999-05-03
1999-01-1514
The possibility of predicting engine bearing durability by elastohydrodynamic lubrication (EHL) calculations was investigated with the aim of being able to improve durability efficiently without conducting numerous confirmation tests. This study focused on the connecting rod big-end bearing of an automotive engine. The mechanisms of wear and fatigue, which determine bearing durability, were estimated by comparing the results of EHL analysis and experimental data. This comparison showed the possibility of predicting the wear amount and the occurrence of fatigue by calculation.
Technical Paper

A Unique Dual-Mode Muffler

1989-11-01
891356
The techniques harmonizing the contradiction which consists of exhaust noise reduction and engine power increase, have been required for the exhaust muffler. This techniques rapidly improved by means of the clarification due to the acoustic theories and the flow analyses. Recently, according to the passenger car tendency toward high grade and high performance, demands for low noise and high power exhaust systems are increasing year by year. The “Dual Mode Muffler” system (abbreviated, below, DMM) mounted on Nissan Cedric, Grolia and Cima series, installed in 1987, is achieved the consistent of the quietness and the engine power performance. This system is the first control type exhaust system for the 4 wheel car. On previous paper, the analyses of acoustic characteristics on DMM were mainly shown. The analyses of exhaust pressure characteristics are also an important theory along with the acoustic in the development of the exhaust system.
Journal Article

Advanced Technology for Dry Multi-Plate Clutch in FWD HEV Transmission (JATCO CVT8 HYBRID)

2015-04-14
2015-01-1094
There has been a growing need in recent years to further improve vehicle fuel efficiency and reduce CO2 emissions. JATCO began mass production of a transmission for rear-wheel-drive (RWD) hybrid vehicle with Nissan in 2010, which was followed by the development of a front-wheel-drive (FWD) hybrid system (JATCO CVT8 HYBRID) for use on a midsize SUV in the U.S. market. While various types of hybrid systems have been proposed, the FWD system adopts a one-motor two-clutch parallel hybrid topology which is also used on the RWD hybrid. This high-efficiency system incorporates a clutch for decoupling the transmission of power between the engine and the motor. The hybrid system was substantially downsized from that used on the RWD vehicle in order to mount it on the FWD vehicle. This paper describes various seal technologies developed for housing the dry multi-plate clutch inside the motor, which was a key packaging technology for achieving the FWD hybrid system.
Technical Paper

Aerodynamics Development for a New EV Hatchback Considering Crosswind Sensitivity

2018-04-03
2018-01-0715
An electric vehicle (EV) has less powertrain energy loss than an internal combustion engine vehicle (ICE), so its aerodynamic accounts have a larger portion of drag contribution of the total energy loss. This means that EV aerodynamic performance has a larger impact on the all-electric range (AER). Therefore, the target set for the aerodynamics development for a new EV hatchback was to improving AER for the customer’s benefit. To achieve lower aerodynamic drag than the previous model’s good aerodynamic performance, an ideal airflow wake structure was initially defined for the new EV hatchback that has a flat underbody with no exhaust system. Several important parameters were specified and proper numerical values for the ideal airflow were defined for them. As a result, the new EV hatchback achieves a 4% reduction in drag coefficient (CD) from the previous model.
Technical Paper

An Analytical Study on Knocking Heat Release and its Control in a Spark Ignition Engine

1988-02-01
880196
In this study the relationship between the timing for the onset of autoignition and the amount of mixture fraction burned by autoignition and the resulting knock intensity is investigated using a combination of high-speed laser shadowgraphy and thermodynamic calculations. It is made clear that over 40 percent of the entire mixture burns due to autoignition in a crank angle of less than five to eight degrees when an engine is operated under a heavy knocking condition. This burn rate is about ten times higher than that of combustion seen in a normally propagating flame. This abrupt heat release causes an oscillation in cylinder gases, resulting in a knocking sound. The experimental procedure is applied to examine the effect of a squish combustion chamber on suppressing knock. The results indicate that, when autoignition occurs in the squish area, an amount of mixture burned by autoignition is small, resulting in lower knock intensity.
Technical Paper

An Automatic Parameter Matching for Engine Fuel Injection Control

1992-02-01
920239
An automatic matching method for engine control parameters is described which can aid efficient development of new engine control systems. In a spark-ignition engine, fuel is fed to a cylinder in proportion to the air mass induced in the cylinder. Air flow meter characteristics and fuel injector characteristics govern fuel control. The control parameters in the electronic controller should be tuned to the physical characteristics of the air flow meter and the fuel injectors during driving. Conventional development of the engine control system requires a lot of experiments for control parameter matching. The new matching method utilizes the deviation of feedback coefficients for stoichiometric combustion. The feedback coefficient reflects errors in control parameters of the air flow meter and fuel injectors. The relationship between the feedback coefficients and control parameters has been derived to provide a way to tune control parameters to their physical characteristics.
X