Refine Your Search

Search Results

Journal Article

A Comparison of the NHTSA Research Offset Oblique and Small Overlap Impact Tests and the IIHS Moderate and Small Overlap Tests

2014-04-01
2014-01-0537
The National Highway Traffic Safety Administration (NHTSA) and the Insurance Institute for Highway Safety (IIHS) have both developed crash test methodologies to address frontal collisions in which the vehicle's primary front structure is either partially engaged or not engaged at all. IIHS addresses Small Overlap crashes, cases in which the vehicle's primary front energy absorbing structure is not engaged, using a rigid static barrier with an overlap of 25% of the vehicle's width at an impact angle of 0°. The Institute's Moderate Overlap partially engages the vehicle's primary front energy absorbing structure using a deformable static barrier with 40% overlap at a 0° impact angle. The NHTSA has developed two research test methods which use a common moving deformable barrier impacting the vehicle with 20% overlap at a 7° impact angle and 35% overlap at a 15° impact angle respectively.
Technical Paper

A Dynamic Test Procedure for Evaluation of Tripped Rollover Crashes

2002-03-04
2002-01-0693
Rollover crashes have continued to be a source of extensive research into determining both vehicle performance, and occupant restraint capabilities. Prior research has utilized various test procedures, including the FMVSS 208 dolly fixture, as a basis for evaluating vehicle and restraint performance. This research, using 2001 Nissan Pathfinder sport utility vehicles (SUVs), was conducted to update the status of passenger vehicle rollover testing, and evaluate dynamic test repeatability with a new test procedure. A series of eight rollover tests was conducted using these SUV vehicles, mounted on a modified FMVSS 208 rollover dolly fixture, with instrumented dummies in both front seat positions. This test protocol involved launching the vehicles horizontally, after snubbing the dolly fixture, and having the leading-side tires contact curbing for a trip mechanism.
Technical Paper

A Study of a Method for Predicting the Risk of Crossing-Collisions at Intersection

2008-04-14
2008-01-0524
The probability or risk of traffic accidents must be estimated quantitatively in order to implement effective traffic safety measures. In this study, various statistical data and probability theory were used to examine a method for predicting the risk of crossing-collisions, representing a typical type of accident at intersections in Japan. Crossing-collisions are caused by a variety of factors, including the road geometry and traffic environment at intersections and the awareness and intentions of the drivers of the striking and struck vehicles. Bayes' theorem was applied to find the accident probability of each factor separately. Specifically, the probability of various factors being present at the time of a crossing-collision was estimated on the basis of traffic accident data and observation survey data.
Technical Paper

An Application of CAP (Computer-Aided Principle) to Structural Design for Vehicle Crash Safety

2007-04-16
2007-01-0882
The Computer-Aided Principle (CAP) is applied in this study as an effective approach to the crashworthiness design of the vehicle front-end structure. With this method, correlative parameters are extracted in a parametric study by using a cluster analysis. The results can help engineers to understand the fundamental mechanisms of structural phenomena. A simulation example of an offset frontal crash against a deformable barrier (ODB) is presented to show the effectiveness of the proposed method.
Technical Paper

Analysis of Rollover Restraint Performance With and Without Seat Belt Pretensioner at Vehicle Trip

2002-03-04
2002-01-0941
Eight rollover research tests were conducted using the 2001 Nissan Pathfinder with a modified FMVSS 208 dolly rollover test method where the driver and right front dummy restraint performance was analyzed. The rollover tests were initiated with the vehicle horizontal, not at a roll angle. After the vehicle translated laterally for a short distance, a trip mechanism was introduced to overturn the vehicle. Retractor, buckle, and latch plate performance in addition to the overall seat belt performance was analyzed and evaluated in the rollover test series. Retractor pretensioners were activated near the rollover trip in three of the tests to provide research data on its effects. Various dummy sizes were utilized. The test series experienced incomplete data collection and a portion of the analog data was not obtained. National Automotive Sampling System (NASS) data was also analyzed to quantify the characteristics of real world rollovers and demonstrated the benefits of restraint use.
Technical Paper

Application of CAP to Analyze Mechanisms Producing Dummy Injury Readings under U.S. Side Impact Test Conditions

2011-04-12
2011-01-0014
Evaluations of dummy injury readings obtained in regulatory crash tests and new car assessment program tests provide indices for the development of crash safety performance in the process of developing new vehicles. Based on these indices, vehicle body structures and occupant restraint systems are designed to meet the required occupant injury criteria. There are many types of regulatory tests and new car assessment program tests that are conducted to evaluate vehicle safety performance in side impacts. Factoring all of the multiple test configurations into the development of new vehicles requires advanced design capabilities based on a good understanding of the mechanisms producing dummy injury readings. In recent years, advances in computer-aided engineering (CAE) tools and computer processing power have made it possible to run simulations of occupant restraint systems such as side airbags and seatbelts.
Technical Paper

Appling CAE to Understand the Causality of Dummy Neck Injury Readings

2011-04-12
2011-01-1069
The progress of computer technology and CAE methodology makes it possible to simulate dummy injury readings in vehicle crash simulations. Dummy neck injuries are generally more difficult to simulate than injuries to other regions such as the head or chest. Accordingly, improving the accuracy of dummy neck injury data is a major concern in frontal occupant safety simulations. This paper describes the use of an advanced airbag modeling methodology to improve the accuracy of dummy neck injury readings. First, the following items incorporated in the advanced airbag model are explained. (1) The Finite Point Method (FPM) is used to simulate the flow of gas. (2) A folding model is applied to simulate the folded condition. (3) The fabric material properties used in the simulation take into account anisotropy in the fiber directions and the nonlinear, hysteresis characteristics of stiffness.
Technical Paper

Automatic Falling Occupant Protecting Net - Preliminary Study

1970-02-01
700452
An automatic, falling, occupant-protecting net is being developed for spreading in front of automobile occupants in the time interval between vehicle impact and occupant collision. The device is designed to counteract forward body acceleration and minimize head, neck, and chest injuries. This device was investigated by sled and barrier tests using anthropomorphic dummies. Significant improvements in occupant kinematics and remarkable reduction in head and chest impact force has been observed. Some problems such as whiplash injury await solution but continuing investigation of proposed measures of correction show that they are not insurmountable.
Technical Paper

Comparison of Head Kinematics of Bicyclist in Car-to-Bicycle Impact

2020-04-14
2020-01-0932
This study focused on European NCAP activities of introducing a new head protection evaluation procedure, as proposed by BASt (Federal Highway Research Institute - GERMANY). Various kinds of E-bikes are available in the market, ranging from E-bikes that have a small motor to assist the rider’s pedal-power i.e., pedelecs to somewhat more powerful E-bikes which is similar to a moped-style scooter. This paper focused on identifying the factors influencing bicyclist head kinematics during bicycle vs. passenger vehicle (PV) collisions at the intersection. Two AM50 bicyclist FE models are developed using i) GHBMC Human Body Model (HBM) and ii) WorldSID (WS) side impact dummy. Head kinematics of bicyclists of pedal-assist E-bike and normal bike were compared using CAE simulation. It is found that the vehicle’s impact velocity, type of bicycle, the mass of E-bike and bicycle traveling speed will influence the head kinematics.
Technical Paper

Compatibility for Frontal Impact Collisions Between Heavy and Light Cars

2003-05-19
2003-06-0176
Recently, frontal impact compatibility is discussed internationally and various procedures to assess compatibility and various measures to improve compatibility have been proposed. Considering the above, car-to-car tests between a heavy car and a light car were conducted to clarify the effect of homogenizing the front structure on compatibility. Then correlation between the results of the barrier impact tests proposed as the procedures to assess compatibility and the car-to-car test results and the requirements for the assessment procedure were discussed.
Technical Paper

Development of Side Impact Air Bag System for Head and Chest Protection

1998-05-31
986165
Most of the side impact air bag systems in the current market are designed to protect the thorax area only. The new Head and Thorax SRS Side Impact Air Bag system, which Nissan recently introduced into the market, was designed to help provide additional protection for the head in certain side impacts. The system may help protect occupant head contacts when the vehicle collides into a tree, or the high hood of a large striking vehicle. This paper introduces the additional features and function of the new Head and Thorax SRS Side Impact Air Bag system, and some evaluation results in laboratory testing.
Technical Paper

Development of a Brake-Operated Pre-Crash Seatbelt System and Performance Evaluation

2004-03-08
2004-01-0851
The brake-operated pre-crash seatbelt system retracts the seatbelt webbing by activating an electric motor attached to the seatbelt retractor. Detection of emergency braking is used as a trigger to activate the motor. Retracting the seatbelt helps to reduce an occupant's forward movement due to inertial force acting on the occupant's body during deceleration in braking. Addtionally, retraction of the seatbelt webbing also helps existing occupant restraint devices to work more effectively in a crash. The effectiveness of the pre-crash system was evaluated by considering two conditions combined. One involved the dynamic behavior of the vehicle and occupants prior to a crash. The other concerned the safety performance of the vehicle during the crash event. Experiments were conducted to measure the behavior of the vehicle and occupants under emergency braking prior to a crash.
Technical Paper

Effective Numerical Simulation Tool for Real-World Rollover Accidents by Combining PC-Crash and FEA

2007-04-16
2007-01-1773
With SUVs and minivans accounting for a larger share of the US market in the past decade, rollover accidents have drawn greater attention, leading to more active research from different perspectives. This ranges from investigations for elucidating the basic causes and mechanisms of rollover accidents to studies of more advanced occupant protection measures. As the phenomenon of a rollover accident is longer in duration than frontal, side or rear impacts, it is relatively difficult [1] to simulate such accidents for experimental verification and also for proper evaluation of occupant restraint system performance. In this work, we focused on the trip-over type, which occurs most frequently, and performed simulations to reproduce real-world rollover accidents by combining PC-Crash and FEA.
Technical Paper

Finite Element Simulation of Ankle/Foot Injury in Frontal Crashes

2000-03-06
2000-01-0156
Finite element models of human body segments have been developed in recent years. Numerical simulation could be helpful when understanding injury mechanisms and to make injury assessments. In the lower leg injury research in NISSAN, a finite element model of the human ankle/foot is under development. The mesh for the bony part was taken from the original model developed by Beaugonin et al., but was revised by adding soft tissue to reproduce realistic responses. Damping effect in a high speed contact was taken into account by modeling skin and fat in the sole of the foot. The plantar aponeurosis tendon was modeled by nonlinear bar elements connecting the phalanges to the calcaneus. The rigid body connection, which was defined at the toe in the original model for simplicity, was removed and the transverse ligaments were added instead in order to bind the metatarsals and the phalanges. These tendons and ligaments were expected to reproduce a realistic response in compression.
Technical Paper

Impact Simulation of the CFRP Structure for a GT-Car

2003-10-27
2003-01-2768
CFRP (Carbon Fiber Reinforced Plastic) materials have been extensively used in racing cars because of its high stiffness and lightweight. Recently, car crash safety is becoming increasingly important even for racing cars. CFRP has also a merit on crash safety because it offers the freedom to set the material characteristics where needed and the needless of considering remaining length after the impact. In this analysis, a multi-layered shell material is applied to reproduce the crash characteristics of the CFRP structure. Fundamental crash test data of simple specimens are used to verify the material characteristics of CFRP, and applied to the Crash-Box of a Nissan GT500 racing car. The simulation showed good correlation with the actual test, and the final design was based on these analyses without the need of repeating impact tests.
Technical Paper

Influence of Vehicle Deceleration Curve on Dummy Injury Criteria

1988-02-01
880612
This paper discusses the influence of variations in the vehicle deceleration curve on dummy injury criteria for a passive seat belt-restrained dummy using MVMA-2D crash victim simulation and sled tests for frontal crash analysis. The MVMA-2D simulation and sled tests verified that the vehicle deceleration curve exhibiting the higher Residual Deformation (RD) produces smaller dummy injury criteria. Also, using MVMA-2D simulation, the peak levels of the first and second waves were changed as parameters to ensure accurate evaluation of the influence of the deceleration curve on dummy injury criteria. Moreover, this paper also discusses Nissan's use of both occupant kinematic simulation and vehicle structural sisulation for frontal crash in the development of its vehicles.
Technical Paper

Investigation of a Test Method to Reproduce Car-to-Car Side Impacts

2020-04-14
2020-01-1221
A side impact is one of the severest crash configurations among real-world accidents. In the US market, even though most vehicles have achieved top ratings in crash performance assessment programs in recent years, there has hardly been any sign of a decline in side-impact fatalities for the last few years, according to statistics retrieved from the National Highway Traffic Safety Administration’s Fatality Analysis Reporting System. In response to this trend, the Insurance Institute for Highway Safety (IIHS) is planning to introduce a new test protocol for side impact assessment. One of the points to be clarified in current side impact tests is whether the present side moving deformable barrier (MDB), which includes the barrier face and cart, faithfully reproduces a real-world car-to-car crash.
Technical Paper

Multi-parameter, Multi-objective Optimization of Injury Indexes of Vehicle Crash Models

2005-04-11
2005-01-1302
This paper presents a method for optimizing occupant restraint system parameters in vehicle frontal crashes. Simulation models incorporating restraint systems and dummies are used for predicting injury indexes. A full-scale survey of all of the design parameters related to the injury indexes would require a vast number of simulations. Therefore, the Design of Experiments (DOE) method involving a minimum number of experiments is more realistic. However, dummy behavior often shows discontinuity if the dummy comes in contact with the steering wheel, so it is not predicted well with usual DOE methods. This paper shows how to incorporate such discontinuity in a DOE study and how to optimize the restraint system parameters to reduce occupant injury indexes. It also discusses the feasibility of this method for integrated optimization of 50th percentile and 5th percentile dummies.
Technical Paper

New Design Support Approach CAP (Computer Aided Principle) and an Application to Structural Design for Vehicle Crash Safety

2007-08-05
2007-01-3718
The authors have proposed a new method to identify the important information which links to the basic principle of the design's physical behavior by using CAE technology, and this method was named as CAP (Computer-Aided Principle).This method can help the engineers to grasp the basic physical characteristic that governs the first-order behavior. In this study, the authors applied CAP to the simulations of the design of frontal crash phenomena, which are difficult to understand because of the problem of strong nonlinearity, and explored the possibilities for using CAP. The correlative physical parameters thus obtained can help designers to understand the essence of the phenomena involved.
Technical Paper

Numerical Analysis of Vehicle Frontal Crash Phenomena

1992-02-01
920357
Recent years have seen remarkable advances in the development and diffusion of numerical analysis techniques using the finite element method for examining vehicle crashworthiness. The importance of numerical analysis in vehicle development work has also increased. One reason for this is that the use of numerical analysis makes it possible to study crash phenomena in detail based on calculated data which can not be obtained experimentally. In this study, the non-linear dynamic finite element program PAM-CRASH was applied to a vehicle frontal crash simulation to calculate the body deformation modes, the force transmitted at different sections of the body structure and the internal energy accumulation of each component. The results obtained provide a quantitative explanation of the deformation mechanism of the body structure.
X