Refine Your Search



Search Results

Technical Paper

A Study of Technology for Assembling Vehicle Endurance Reliability

The ways in which vehicles are used in the field are continually becoming more diverse. In order to provide the optimum solution with respect to performance and weight, it is necessary to be able to assure vehicle endurance reliability with a high degree of accuracy in relation to the manner of use in each market. This situation has increased the importance of accurately quantifying the ways in which vehicles are used in the field and of designing vehicles with sufficient endurance reliability to match the usage requirements. This report presents a “market model” by which the manner of usage in the field can be treated quantitatively using combinations of environmental factors that influence the road load, drive load and corrosion load, representing typical loads vehicles must withstand.
Technical Paper

A Study of a Safety Support System that Uses Information from the Road Infrastructure

A safety support system that uses information received from the road infrastructure is being developed in a project sponsored by the Ministry of Land, Infrastructure and Transport. The purpose of this system is to reduce the number of accidents at intersections and on highways. The system is now being tested in an experimental vehicle. This paper describes what kind of information is helpful to drivers based on the experimental results.
Technical Paper

All Round Blind Spot Detection by Lens Condition Adaptation based on Rearview Camera Images

This paper deals with a vehicle detection method for realizing a blind spot warning function, under various environmental conditions. We introduced a method that is capable of discriminating the target object vehicles, under poor lighting conditions and in cases where the lens may be exposed to splashes in wet, snow and dirt roads. The image sensing of the vehicle detection consists of four functional components: obstacle detection, velocity estimation, vertical edge detection, and final classification. Such componets allow robust performances resembling geometry based approaches, with low calculation power as an apperance based approach. This paper describes the functional components, and furthermore methods to enhance the performances under low contrast conditions and also suppress false detections caused by residue on the lens, which becomes essential for installation on vehicles driven in actual road conditions.
Technical Paper

An Exploratory Study of the Driver Workload Assessment by Brain Functional Imaging Using Onboard fNIRS

In making driver workload assessments, it is important to evaluate the driver's level of brain activity because the operation of a motor vehicle presumably involves higher-order brain functions. Driving on narrow roads in particular probably imposes a load on the driver's brain functions because of the need to be cognizant of the tight space and to pay close attention to the surroundings. Test vehicles were fitted with a functional near-infrared spectroscopy (fNIRS) system for measuring bloodstream concentrations at 32 locations in the frontal lobe of the participating drivers in order to evaluate their levels of mental activity while driving on narrow roads. The results revealed significant increases in cerebral blood flow corresponding to the perceived workload. This suggests that increases in cerebral blood flow can be used as an effective index for estimating mental workloads.
Technical Paper

Analysis of Disc Brake Squeal, 1992

Eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. Considerable amount of research and development works have been done on the problem to date. In this study, we focused on the analyses of friction self-excited vibration and brake part resonance during high frequency brake squeal. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding velocities. Its vibration frequency can be calculated in relation to the mass and stiffness of the pad sliding surface. Frequency responses of the brake assembly were measured and the vibration modes of the pad, disc and caliper during squeal were identified through modal analysis. Further study led to the development of a computer simulation method for analyzing the vibration modes of brake parts. Analytical results obtained using the method agreed well with the corresponding experimental data.
Technical Paper

Application Development of Low Carbon Type Dual Phase 980MPa High Strength Steel

Use of high strength steel (HSS) could be an important consideration in achieving competitive weight and safety performance of the body-in-white (BIW). This study covers key technical issues in the application development. Many aspects were studied such as formability, weldability and impact strength for application of this grade to the BIW. One of the key issues is spot weldability, especially in the assembly of heavy gauge materials for structural parts. The spot weld strength appears not to satisfy the target for some HSS applications, when hardness of the nugget is high. The relation between weld strength and the chemical composition of steel sheets was studied, because hardness can be controlled by chemical composition and welding conditions. It was found that using lower carbon content or carbon equivalent compared to conventional grades could improve weld strength.
Technical Paper

Challenges of Widespread Marketplace Acceptance of Electric Vehicles -- Towards a Zero-Emission Mobility Society

Curbing emissions of carbon dioxide (CO₂), which is believed by many scientists to be a major contributor to global warming, is one of the top priority issues that must be addressed by automobile manufacturers. Automakers have set their own strategies to improve fuel economy and to reduce CO₂ emissions. Some of them include integrated approaches, focusing on not only improvement of vehicle technology, but also human factors (eco-driving support for drivers) and social and transportation factors (traffic management by intelligent transportation systems [ITS]). Among them, electric vehicles (EVs) will be a key contributor to attaining the challenging goal of CO₂ reduction. Mass deployment of EVs is required to achieve a zero-emission society. To accomplish that, new advanced technologies, new business schemes, and new partnerships are required.
Journal Article

Connected Vehicle Accelerates Green Driving

After the turn of the century, growing social attention has been paid to environmental concerns, especially the reduction of greenhouse gas emissions and it comes down to a personal daily life concern which will affect the purchasing decision of vehicles in the future. Among all the sources of greenhouse gas emissions, the transportation industry is the primary target of reduction and almost every automotive company pours unprecedented amounts of money to reengineer the vehicle technologies for better fuel efficiency and reduced CO2 emission. Besides those efforts paid for sheer improvements of genuine vehicle technologies, NISSAN testified that “connectivity” with outside servers contributed a lot to reduce fuel consumption, thus the less emission of GHG, with two major factors; 1. detouring the traffic congestions with the support of probe-based real-time traffic information and 2. providing Eco-driving advices for the better driving behavior to prompt the better usage of energy.
Technical Paper

Development of Practical Heads-Up Display for Production Vehicle Application

THIS PAPER presents an advanced heads-up display which has been newly developed for use in 88 Nissan Silvia model. The HUD consists of a projector with a newly developed high brightness VFD and light-selective film used as a combiner which is coated on the windshield. This combination provides good display legibility even under bright sunlight. The display shows the vehicle speed in a three-digit reading at distance of more than one meter from the driver's eyes. The windshield-coated combiner conforms to U.S. safety standards concerning light transmittance, abrasion and other performance requirements. Experimental data are also presented which substantiate the HUD's high legibility and confirm its effect in enhancing the driver's attention toward the road ahead
Technical Paper

Development of a Headway Distance Control System

This paper describes a headway distance control system for platoon driving on an automated highway system (AHS). The system implemented on a test vehicle is described first, followed by a description of a vehicle control method based on the use of throttle and brake actuators. This method makes it possible to obtain the target acceleration and deceleration regardless of the vehicle speed range and the rate of acceleration or deceleration. Experimental and simulation results obtained with this method are presented. A control method is then described that uses inter-vehicle communication and laser radar to maintain a constant headway between vehicles. The results of simulations and driving tests conducted with three vehicles are presented to illustrate that the use of inter-vehicle communication is highly effective in improving headway control performance.
Technical Paper

Development of a New 5.6L Nissan V8 Gasoline Engine

This paper describes a new 5.6-liter DOHC V8 engine, VK56DE, which was developed for use on a new full-size sport utility vehicle and a full-size pickup truck. To meet the demands for acceleration performance when merging into freeway traffic, passing or re-acceleration performance from low speed in city driving and hill-climbing or passing performance when towing, the VK56DE engine produces high output power at top speed and also generates ample torque at low and middle engine speeds (90% of its maximum torque is available at speeds as low as 2500 rpm). Furthermore, this engine achieves top-level driving comfort in its class as a result of being derived from the VK45DE engine that was developed for use on a sporty luxury sedan. Development efforts were focused on how to balance the required performance with the need for quietness and smoothness.
Technical Paper

Development of a New HC-Adsorption Three-Way Catalyst System for Partial-ZEV Performance

This paper describes a newly developed HC-adsorption three-way catalyst and adsorption system that reduce cold-start HC emissions with high efficiency. This system is the first of its kind anywhere in the world to be implemented on production vehicles. An overview is given of the various improvements made to achieve higher cold-start HC conversion efficiency. Improvement of conversion performance was accomplished by (1) increasing the thermal stability of the HC adsorbent, (2) improving desorbed HC conversion efficiency and durability and (3) optimizing the geometric surface area (GSA) of the substrate. Concretely, the thermal stability of the adsorbent was improved by enhancing the high-temperature durability of zeolite. Improvement of desorbed HC conversion efficiency was accomplished by improving the OSC material so as to match the temperature rise characteristic and usage temperature of the catalyst.
Technical Paper

Development of an Adaptive Cruise Control System with Stop-and-Go Capability

An Adaptive Cruise Control system with stop-and-go capability has been developed to reduce the driver's workload in traffic jams on expressways. Based on an analysis of driving behavior characteristics in expressway traffic jams, a control system capable of modeling those characteristics accurately has been constructed to provide natural vehicle behavior in low-speed driving. The effectiveness of the system was evaluated with an experimental vehicle, and the results confirmed that it reduces the driver's workload. This paper presents an outline of the system and its effectiveness along with the experimental results.
Technical Paper

Development of an FCV with a New FC Stack for Improved Cold Start Capability

To promote widespread use of fuel cell vehicles (FCVs), further improvement of cold start capability is required for operation in various extreme temperature regions all over the world. Sub-freezing, cold start issues of fuel cells must be resolved through gaining a better understanding of the physical phenomena taking place in a cell during cold start and by elucidating the mechanisms hindering cold startup. Nissan has improved its understanding of the physical phenomena occurring in a fuel cell (FC) during cold startup by a laboratory-scale FC experiment at subfreezing temperatures and a numerical calculation that expresses various transport processes in a fuel cell, including those of the reactant gases, water, electrons and heat. The results have identified several necessary conditions for mass transport in a cell during cold startup and the factors that limit and govern the phenomena involved.
Technical Paper

Driving Workload Comparison Between Older and Younger Drivers Using the Steering Entropy Method

In this study, an attempt was made to apply the steering entropy method, proposed by Boer and Nakayama as a workload measurement technique, to a comparative evaluation of the workload of older and younger drivers. As the first step, driving simulator tests were conducted to examine a method of making comparisons between subjects whose driving performance differed. The same method was then used in making evaluations during driving tests conducted with an actual vehicle. Under the conditions used in this study, the results indicate that it should be possible to compare driving workloads among different subjects through the combined used of Hp and α. Hp is a quantified value of steering perturbation as an information entropy value that is calculated from a time history of steering angle data. It changes between 0 (no steering perturbation) and 1 (absolute randomness) in a theoretical sense.
Technical Paper

Electronically Controlled Shock Absorber System Used as a Road Sensor Which Utilizes Super Sonic Waves

An important factor in the development of vehicle suspensions has been how to get higher performance from both ride and stability, which are normally in conflict. In addressing this problem, we analyzed the optimum damping forces of shock absorbers for various driving conditions and developed an electronically controlled shock absorber system, which we call “Super Sonic Suspension” based on the results. Through this microcomputer-controlled system, we achieved a great improvement in riding comfort by being able to the damping force much lower than before, based on the results of said analysis. At the same time, stability of the vehicle was also improved by optimumly controlling the damping force for various driving conditions through signals from a newly developed road sensor, which utilizes supersonic waves, and other sensors.
Technical Paper

Estimation of Road Configuration and Vehicle Attitude by Lane Detection for a Lane-Keeping System

This paper describes an image processing system for tracking a traffic lane by recognizing white lines on the road ahead. The system utilizes the features of the white lines and the Hough transformation to detect white line candidate points in images taken with a CCD camera. The parameters of the road configuration and vehicle attitude are estimated with an extended Kalman filter. This system has been applied to achieve a lane-keeping assistance system that provides steering control based on the host vehicle’s lateral position in its lane.
Technical Paper

Factoring Nonlinear Kinematics into New Suspension Design: A CAE Approach to Vehicle Roll Dynamics

Over the past several decades, vehicle dynamics have been treated mainly on the basis of linear theories. An actual vehicle, however, also shows nonlinear properties such as roll behavior induced by movement of the roll axis. The purpose of this study was to investigate the vehicle roll dynamics in the nonlinear range. Suspensions were divided into two categories and computer-aided engineering (CAE) was used to conduct analyses of complicated kinematics. The results obtained provided theoretical support for designing the Multi-Link Beam Rear Suspension, a new type of suspension for front-wheel-drive cars.
Technical Paper

High Performance Differential Gear

Excellent fuel economy and high performance have been urgent in Japanese automobile industries. With increasing engine power, many of the power train components have to withstand higher loads. Differential pinion gear being one of those highly stressed parts, excellent fatigue and shock resistance have been demanded. At first the fundamental study on the fatigue and impact crack behavior of carburized components was studied and the new grade composed of 0.18%C-0.7%Mn-1.0%Cr-0.4%Mo was alloy designed. Furthermore, Si and P is reduced less than 0.15 and 0.015%, respectively aiming at the reduction of intergranular oxidation and improved case toughness. The differential gear assembly test has proved that the new grade shows three times as high impact strength as that of conventional steel, SCM418, and almost the same as that of SNCM420 containing 1.8%Ni.
Technical Paper

Interactive Information Delivery Navigation System

In the past few years, car navigation and cellular phone system are rapidly increased in Japan and vehicle information and communication system (VICS), the public traffic information service started in 1996, accelerates realization of ITS world. This rapid movement causes drivers to want more information on not only traffic jam but also other versatile items like parking availability, weather report and the latest news, etc. via cellular phone network. This paper describes the on-demand information service with the interactive human interface by operators and the development of the information center and the in-vehicle system to realize it.