Refine Your Search



Search Results

Technical Paper

A New Nissan 3.0-liter V-6 Twin-cam Twin-turbo Engine with Dual Intake and Exhaust Systems

As a new generation sports car engine to lead the field in the 1990s, a 3.0 liter, 60°V, type 6 cylinder, 4 cam, 24 valve engine (VG30DETT) has been developed to achieve the utmost in high performance levels and reliability. it has been mounted on the new model 300ZX and announced in the North America and Japanese markets. The VG30DETT engine is based on the previous VG30DE engine (the engine mounted on the former model 300ZX designed for the market in Japan). The main components, the major driving and the lubrication systems including such parts as the crank shaft,con-rod, cylinder block, piston, exhaust manifold, and oil pan of the VG30DE were thoroughly reviewed and revised. The VG30DETT engine is the result of redesigning the structure of the engine itself and its parts and components to assure durability under, high-level performance requirements.
Technical Paper

A Study of Drivers' Trust in a Low-Speed Following System

Driving tests were conducted using an experimental vehicle equipped with an adaptive cruise control system incorporating low-speed following capability in order to evaluate drivers' trust in a driver support system. The results revealed that the drivers' trust in the system declined in cases where the control algorithm produced vehicle behavior that was inconsistent with their expectations. However, that decline in trust ceased to be observed as the drivers' understanding of the system improved. This result suggests a correlation between their understanding of the system and trust in it.
Technical Paper

A Study of String-Stable ACC Using Vehicle-to-Vehicle Communication

A study was made on a control method for an adaptive cruise control (ACC) system that uses vehicle-to-vehicle communication to achieve a substantial improvement in string stability and natural headway distance response characteristics at lower levels of longitudinal G. A control system using model predictive control was constructed to achieve this desired ACC vehicle behavior. Control simulations were performed using experimental data obtained in vehicle-following driving tests conducted on a proving ground course using a platoon of three manually driven vehicles. The results showed that the proposed ACC system satisfactorily achieved higher levels of required ACC performance.
Technical Paper

A Study of a Gasoline-Fueled Near-Zero-Emission Vehicle Using an Improved Emission Measurement System

This paper concerns research on an emission control system aimed at reducing emission levels to well below the ULEV standards. As emission levels are further reduced in the coming years, it is projected that measurement error will increase substantially. Therefore, an analysis was made of the conventional measurement system, which revealed the following major problems. 1. The conventional analyzer, having a minimum full-scale THC range of 10 ppmC, cannot measure lower concentration emissions with high accuracy. 2. Hydrocarbons are produced in various components of the measurement system, increasing measurement error. 3. Even if an analyzer with a minimum full-scale THC range of 1 ppmC is used in an effort to measure low concentrations, the 1 ppmC measurement range cannot be applied when the dilution air contains a high THC concentration. This makes it impossible to obtain highly accurate measurements. 4.
Technical Paper

Adaptive Cruise Control System Using CVT Gear Ratio Control

This paper describes a newly developed adaptive cruise control (ACC) system using continuously variable transmission (CVT) gear ratio control. This system provides excellent headway distance control performance at a reasonable cost. With this system, headway distance is measured with a laser radar, and the throttle position and CVT gear ratio are controlled under both acceleration and deceleration situations. The new ACC system consists of a target headway distance calculator, a headway distance controller, a vehicle velocity controller and a drive torque controller. Using a drive torque control method that was newly developed based on integrated control of engine torque and the CVT gear ratio, the following benefits are obtained. (1) It provides smoother acceleration and deceleration. (2) It maintains the target vehicle velocity on steep uphill and downhill grades. As a result, sufficient ACC performance can be attained even in 2.0-liter class vehicles.
Technical Paper

An Integrated Control Algorithm for an SI Engine and a CVT

A new integrated control system has been developed for controlling an SI engine and a CVT proactively so as to obtain the demanded drive torque most efficiently. Taking into account ease of calibration, a control system configuration has been achieved that determines the CVT ratio from the target drive torque and vehicle speed, based on the steady-state relationship between the demanded drive torque and the vehicle speed, gear ratio, engine torque and fuel economy. An analysis was made of drive torque characteristics while the ratio was changing under transient conditions. The results showed that using engine torque to compensate for the ratio change response lag and inertia torque, which is proportional to the differential of the gear ratio, is effective in improving drive torque responsiveness.
Technical Paper

Application of a Control System CAD Program to a Study of an Electronic Engine Control System

Automotive electronic control systems have tended to become more complex in recent years as a result of stronger requirements for environmental friendliness and higher levels of driveability. The first step in developing a control system is to study the required logic and system configuration at the initial stage of new vehicle development. The authors have incorporated an engine-vehicle model in a control system CAD program to simulate the logic needed for various control tasks. This paper presents a typical application in which a behavior of some outputs, such as engine torque and acceleration, was analyzed, and the electronic controls needed to assure driveability were identified. The construction and operation of a controller-in-the-loop system are also described.
Technical Paper

Design of Lane-Keeping Control with Steering Torque Input for a Lane-Keeping Support System

This paper describes the method used to design the basic control algorithm of a lane-keeping support system that is intended to assist the driver's steering action. Lane-keeping control has been designed with steering torque as the control input without providing a minor loop for the steering angle. This approach was taken in order to achieve an optimum balance of lane-keeping control, ease of steering intervention by the driver and robustness. The servo control system was designed on the basis of H2 control theory. Robustness against disturbances, vehicle nonlinearity and parameter variation was confirmed by μ - analysis. The results of computer simulations and driving tests have confirmed that the control system designed with this method provides the intended performance.
Technical Paper

Development and Analysis of New Traction Control System with Rear Viscous LSD

Traction control systems (TCSs) serve to control brake pressure and engine torque, thereby reducing driving wheel spin for improved stability and handling. Systems are divided into two basic types by the brake control configuration. One type is a one-channel left-right common control system and the other is a two-channel individual control system. This paper presents an analysis of these two types of TCS configurations in terms of handling, acceleration, stability, yaw convergence and other performance parameters. The systems are compared with and without a limited-slip differential (LSD) under various road conditions, based on experimental data and computer simulations. As a result of this work, certain Nissan models are now equipped with a new Nissan Traction Control System with a rear viscous LSD (Nissan V-TCS), which provides both the advantages of a rear viscous LSD in a small slip region and a two-channel TCS in a large slip region.
Technical Paper

Development of Adaptive Cruise Control With Low Speed Following Capability

This paper presents a newly developed adaptive cruise control system with low-speed following capability that is designed to reduce the driver's workload in low-speed driving such as in congested traffic. This system incorporates a forward-looking sensor with a wider range of view for improved detection of a preceding vehicle in the same lane. It also has a control algorithm that achieves natural vehicle behavior without any disconcerting feeling, as a result of being constructed on the basis of analyses of driving behavior characteristics at low speed like that of congested traffic. Evaluations conducted on a driving simulator have confirmed that the system is effective in reducing the driver's workload.
Technical Paper

Development of High Response Motor and Inverter System for the Nissan LEAF Electric Vehicle

This paper describes the motor and inverter system developed for the Nissan LEAF that has been specifically designed as a mass-produced electric vehicle. The system produces maximum torque of 280 Nm and maximum power of 80 kW. The motor achieves a small size, high power, and high efficiency as a result of adopting the following in-house technologies. The magnetic circuit design was optimized for an interior magnet synchronous motor to attain the maximum performance figures noted here. The material technologies of the rotor and the stator facilitate high efficiency and the production technology achieves high density winding. The cooling mechanism is optimally designed for a mass-produced electric vehicle. The inverter incorporates the following original technologies and application-specific parts to obtain cost reductions combined with reliability improvements. The power module has an original structure with the power devices mounted directly on the busbars.
Technical Paper

Development of Nissan's New Generation 4-Cylinder Engine

This paper describes the new inline 4-cylinder QR engine series that is available in 2.0-liter and 2.5-liter versions. The next-generation QR engine series incorporates new and improved technologies to provide an optimum balance of power, quietness and fuel economy. Its quiet operation results from the adoption of a compact balancer system and the reduced weight of major moving parts. Power and fuel economy have been enhanced by a two-stage cooling system, a continuous variable valve timing control system, a dual close coupled catalyst system, electronic throttle control and an improved direct-injection system. The latter includes an improved combustion chamber concept and improved fuel spray characteristics achieved by driving the injector by battery voltage. A lightweight and compact engine design has been achieved by adopting a high-pressure die cast aluminum cylinder block, resin intake manifold and rocker cover and a serpentine belt drive.
Technical Paper

Development of a Compact 3-Liter V6 Nissan Engine

This paper presents a compact 3-liter DOHC V6 engine that has been newly designed for the Nissan Maxima. The aims set for the development of this new engine were to achieve a compact package and excellent fuel efficiency. The engine is built around a 4-valve-per-cylinder configuration with a high compression ratio and incorporates a variable valve timing control system, aerodynamic intake ports and roller rocker arms. These features enable it to provide good fuel economy while delivering excellent acceleration. The compact package has been achieved by adopting a 2-stage cam drive, narrow angle valve geometry and an optimized arrangement for the endpivot type hydraulic lash adjusters.
Technical Paper

Development of a Headway Distance Control System

This paper describes a headway distance control system for platoon driving on an automated highway system (AHS). The system implemented on a test vehicle is described first, followed by a description of a vehicle control method based on the use of throttle and brake actuators. This method makes it possible to obtain the target acceleration and deceleration regardless of the vehicle speed range and the rate of acceleration or deceleration. Experimental and simulation results obtained with this method are presented. A control method is then described that uses inter-vehicle communication and laser radar to maintain a constant headway between vehicles. The results of simulations and driving tests conducted with three vehicles are presented to illustrate that the use of inter-vehicle communication is highly effective in improving headway control performance.
Technical Paper

Development of a New-Generation High-Performance 4.5-liter V8 Nissan Engine

This paper describes a new 4.5-liter V8 engine, VH45DE, which was developed for use in the INFINITI Q45 sporty luxury sedan that was released in the U.S. and Japanese markets in November 1989. The many V8 engines in use around the world can be broadly devided into two categories. One category is characterized by ample torque at low engine speed and relatively large engine displacement. The other category is characterized by enhanced performance at relatively high engine speeds. The VH45DE engine is a new-generation V8 powerplant that delivers smooth power output at top-end speed and also generates ample torque at low engine speed to maintain good idle stability, and accomplishes it all with the smallest possible displacement. Development efforts were focused on two main goals. The first was to achieve efficient intake air charging. This has been accomplished the intake air resonant point at a relatively high engine speed through appropriate intake branch and collector tuning.
Technical Paper

Development of a Slip Control System for a Lock-Up Clutch

Lock-up operation of an automatic transmission is known as one good method of improving fuel economy. However, locking up the transmission at low vehicle speeds can often cause undesirable vibration or booming noise. Slip control of the lock-up clutch can resolve these problems, but the speed difference of the lock-up clutch needs to be controlled at a certain value. This control system has to overcome large changes in the parameters of the lock-up system at low vehicle speeds and also changes with regard to the speed ratio in a continuously variable transmission (CVT). In this study, this complex non-linear system has been modeled as a first-order linear parameter varying (LPV) system. A robust control algorithm was applied taking various disturbances into account to design a new slip lock-up control system.
Technical Paper

Development of a Slip Speed Control System for a Lock-Up Clutch (Part II)

A new control system for the coasting range was designed with the μ-synthesis technique to achieve robust stability, based on the slip speed control system that was reported in our previous paper.(1) The results of driving tests conducted with the fuel supply cut off while coasting confirm that the new control system is able to avoid engine stall even under sudden hard braking on a low friction road (μ<0.1) at a vehicle speed of 20 km/h and a turbine speed of 1000 rpm. The system also allows the lock-up clutch to slip stably at a certain target slip speed at anytime while coasting and achieves robust performance against characteristic variations of the lock-up mechanism. This slip speed control system thus makes it possible to extend the fuel cut-off range to a lower engine speed of 800 rpm, down from 950 rpm, thereby improving fuel economy by about 1%.
Journal Article

Development of a Slip Speed Control System for a Lockup Clutch (Part III)

It is difficult for a conventional robust control algorithm to assure the performance of a slip speed control system, because the plant (lockup system) includes the nonlinear characteristics of the hydraulic system and large changes in the parameters of the slip model at low vehicle speed. The purpose of this study is to reduce the fuel consumption and improve the drivability of vehicles at takeoff by using a slip speed control system. Providing a large feedback gain is effective in reducing the influence of nonlinearity. However, since the operating parameters of the lockup clutch change depending on the driving conditions, that is not possible. A feedback compensator with a gain-scheduled H∞ control method was used in this study to solve these problems. The effectiveness of the slip speed control system was demonstrated in driving tests. Using this control system, the slip speed can be controlled with high accuracy, thereby reducing unnecessary revving of the engine.
Technical Paper

Development of an Adaptive Cruise Control System with Stop-and-Go Capability

An Adaptive Cruise Control system with stop-and-go capability has been developed to reduce the driver's workload in traffic jams on expressways. Based on an analysis of driving behavior characteristics in expressway traffic jams, a control system capable of modeling those characteristics accurately has been constructed to provide natural vehicle behavior in low-speed driving. The effectiveness of the system was evaluated with an experimental vehicle, and the results confirmed that it reduces the driver's workload. This paper presents an outline of the system and its effectiveness along with the experimental results.
Technical Paper

Digital Engine Controller

An electronic engine control system that uses a microcomputer has been developed. It combines four control systems - fuel injection, ignition timing, EGR and idle speed control - utilizing the engine speed and intake air quantity for its main parameters. The control circuit is composed of an 8-bit microcomputer combining an 8k byte ROM, RAM, a custom designed input/output LSI, and two hybrid integrated circuits, one has voltage regulators and another has input/output interface circuits. The control program consists of a main program, a fail-safe program for noise protection and a check program for diagnostic functions. The main program uses interrupt techniques to control effectively the four items by one microcomputer. The interrupt requests occur from crankshaft position signal and interval timer signals.