Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Modeling Study of SCR Reaction Kinetics from Reactor Experiments

2013-04-08
2013-01-1576
In order to further characterize and optimize the performance of Selective Catalytic Reduction (SCR) aftertreatment systems used on heavy-duty diesel engines, an accurately calibrated high-fidelity multi-step global kinetic SCR model and a reduced order estimator for on-board diagnostic (OBD) and control are desirable. In this study, a Cu-zeolite SCR catalyst from a 2010 Cummins ISB engine was experimentally studied in a flow reactor using carefully designed protocols. A 2-site SCR model describing mass transfer and the SCR chemical reaction mechanisms is described in the paper. The model was calibrated to the reactor test data sets collected under temperatures from 200 to 425 °C and SCR space velocities of 60000, 90000, and 120000 hr-1. The model parameters were calibrated using an optimization code to minimize the error between measured and simulated NO, NO₂, N₂O, and NH₃ gas concentration time histories.
Technical Paper

Effects of Diesel Fuel Sulfur Level on Performance of a Continuously Regenerating Diesel Particulate Filter and a Catalyzed Particulate Filter

2000-06-19
2000-01-1876
This paper reports the test results from the DPF (diesel particulate filter) portion of the DECSE (Diesel Emission Control - Sulfur Effects) Phase 1 test program. The DECSE program is a joint government and industry program to study the impact of diesel fuel sulfur level on aftertreatment devices. A systematic investigation was conducted to study the effects of diesel fuel sulfur level on (1) the emissions performance and (2) the regeneration behavior of a continuously regenerating diesel particulate filter and a catalyzed diesel particulate filter. The tests were conducted on a Caterpillar 3126 engine with nominal fuel sulfur levels of 3 parts per million (ppm), 30 ppm, 150 ppm and 350 ppm.
X