Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Novel Capability for Crush Testing Crash Energy Management Structures at Intermediate Rates

2002-06-03
2002-01-1954
The crush performance of lightweight composite automotive structures varies significantly between static and dynamic test conditions. This paper discusses the development of a new dynamic testing facility that can be used to characterize crash performance at high loads and constant speed. Previous research results from the Energy Management Working Group (EMWG) of the Automotive Composites Consortium (ACC) showed that the static crush resistance of composite tubes can be significantly greater than dynamic crush results at speeds greater than 2 m/s. The new testing facility will provide the unique capability to crush structures at high loads in the intermediate velocity range. A novel machine control system was designed and projections of the machine performance indicate its compliance with the desired test tolerances. The test machine will be part of a national user facility at the Oak Ridge National Laboratory (ORNL) and will be available for use in the summer of 2002.
Journal Article

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods

2010-04-12
2010-01-1266
Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple “cold” start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts.
Technical Paper

Development of a Cold Start Fuel Penalty Metric for Evaluating the Impact of Fuel Composition Changes on SI Engine Emissions Control

2018-04-03
2018-01-1264
The U.S. Department of Energy’s Co-Optimization of Fuels and Engines initiative (Co-Optima) aims to simultaneously transform both transportation fuels and engines to maximize performance and energy efficiency. Researchers from across the DOE national laboratories are working within Co-Optima to develop merit functions for evaluating the impact of fuel formulations on the performance of advanced engines. The merit functions relate overall engine efficiency to specific measurable fuel properties and will serve as key tools in the fuel/engine co-optimization process. This work focused on developing a term for the Co-Optima light-duty boosted spark ignition (SI) engine merit function that captures the effects of fuel composition on emissions control system performance. For stoichiometric light-duty SI engines, the majority of NOx, NMOG, and CO emissions occur during cold start, before the three-way catalyst (TWC) has reached its “light-off” temperature.
Journal Article

Effect of Accelerated Aging Rate on the Capture of Fuel-Borne Metal Impurities by Emissions Control Devices

2014-04-01
2014-01-1500
Small impurities in the fuel can have a significant impact on the emissions control system performance over the lifetime of the vehicle. Of particular interest in recent studies has been the impact of sodium, potassium, and calcium that can be introduced either through fuel constituents, such as biodiesel, or as lubricant additives. In a collaboration between the National Renewable Energy Laboratory and the Oak Ridge National Laboratory, a series of accelerated aging studies have been performed to understand the potential impact of these metals on the emissions control system. This paper explores the effect of the rate of accelerated aging on the capture of fuel-borne metal impurities in the emission control devices and the subsequent impact on performance. Aging was accelerated by doping the fuel with high levels of the metals of interest. Three separate evaluations were performed, each with a different rate of accelerated aging.
Journal Article

Evaluation of Fuel-Borne Sodium Effects on a DOC-DPF-SCR Heavy-Duty Engine Emission Control System: Simulation of Full-Useful Life

2016-10-17
2016-01-2322
For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent to exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement.
Technical Paper

Overview of Diesel Emission Control-Sulfur Effects Program

2000-06-19
2000-01-1879
This paper describes the results of Phase 1 of the Diesel Emission Control - Sulfur Effects (DECSE) Program. The objective of the program is to determine the impact of fuel sulfur levels on emissions control systems that could be used to lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from vehicles with diesel engines. The DECSE program has now issued four interim reports for its first phase, with conclusions about the effect of diesel sulfur level on PM and total hydrocarbon (THC) emissions from the high-temperature lean-NOx catalyst, the increase of engine-out sulfate emissions with higher sulfur fuel levels, the effect of sulfur content on NOx adsorber conversion efficiencies, and the effect of fuel sulfur content on diesel oxidation catalysts, causing increased PM emissions above engine-out emissions under certain operating conditions.
Technical Paper

Performance of a NOX Adsorber and Catalyzed Particle Filter System on a Light-Duty Diesel Vehicle

2001-05-07
2001-01-1933
A prototype emissions control system consisting of a close-coupled lightoff catalyst, catalyzed diesel particle filter (CDPF), and a NOX adsorber was evaluated on a Mercedes A170 CDI. This laboratory experiment aimed to determine whether the benefits of these technologies could be utilized simultaneously to allow a light-duty diesel vehicle to achieve levels called out by U.S. Tier 2 emissions legislation. This research was carried out by driving the A170 through the U.S. Federal Test Procedure (FTP), US06, and highway fuel economy test (HFET) dynamometer driving schedules. The vehicle was fueled with a 3-ppm ultra-low sulfur fuel. Regeneration of the NOX adsorber/CDPF system was accomplished by using a laboratory in-pipe synthesis gas injection system to simulate the capabilities of advanced engine controls to produce suitable exhaust conditions. The results show that these technologies can be combined to provide high pollutant reduction efficiencies in excess of 90% for NOX and PM.
X