Refine Your Search

Topic

Author

Search Results

Technical Paper

A Feasibility Evaluation of a Thermal Plasma Fuel Reformer for Supplemental Hydrogen Addition to Internal Combustion Engines

1999-04-26
1999-01-2239
One scenario for reducing engine out NOx in a spark ignition engine is to introduce small amounts of supplemental hydrogen to the combustion process. The supplemental hydrogen enables a gasoline engine to run lean where NOx emissions are significantly reduced and engine efficiency is increased relative to stoichiometric operation. This paper reports on a mass and energy balance model that has been developed to evaluate the overall system efficiencies of a thermal reformer-heat exchanger system capable of delivering hydrogen to the air intake of a gasoline engine. The mass and energy balance model is utilized to evaluate the conditions where energy losses associated with fuel reformation may be offset by increases in engine efficiencies.
Technical Paper

Achieving Diesel-Like Efficiency in a High Stroke-to-Bore Ratio DISI Engine under Stoichiometric Operation

2020-04-14
2020-01-0293
This work explores pathways to achieve diesel-like, high-efficiency combustion with stoichiometric 3-way catalyst compatible spark ignition (SI). A high stroke-to-bore engine design (1.5:1) with cooled exhaust gas recirculation (EGR) and high compression ratio (rc) was used to improve engine efficiency by up to 30% compared with a production turbocharged gasoline direct injection spark ignition engine. To achieve efficiency improvements, engine experiments were coupled with computational fluid dynamics simulations to guide and explain experimental trends between the original engine and the high stroke-to-bore ratio design (1.5:1). The effects of EGR and late intake valve closing (IVC) and fuel characteristics are investigated through their effects on knock mitigation. Direct injection of 91 RON E10 gasoline, 99 RON E0 gasoline, and liquified petroleum gas (i.e., propane/autogas) were evaluated with geometric rc ranging from 13.3:1 to 16.8:1.
Journal Article

Advanced Intra-Cycle Detection of Pre-Ignition Events through Phase-Space Transforms of Cylinder Pressure Data

2020-09-15
2020-01-2046
The widespread adoption of boosted, downsized SI engines has brought pre-ignition phenomena into greater focus, as the knock events resulting from pre-ignitions can cause significant hardware damage. Much attention has been given to understanding the causes of pre-ignition and identify lubricant or fuel properties and engine design and calibration considerations that impact its frequency. This helps to shift the pre-ignition limit to higher specific loads and allow further downsizing but does not fundamentally eliminate the problem. Real-time detection and mitigation of pre-ignition would thus be desirable to allow safe engine operation in pre-ignition-prone conditions. This study focuses on advancing the time of detection of pre-ignition in an engine cycle where it occurs.
Journal Article

Analysis of Cyclic Variability of Heat Release for High-EGR GDI Engine Operation with Observations on Implications for Effective Control

2013-04-08
2013-01-0270
Operation of spark-ignition (SI) engines with high levels of charge dilution through exhaust gas recirculation (EGR) achieves significant engine efficiency gains while maintaining stoichiometric operation for compatibility with three-way catalysts. Dilution levels, however, are limited by cyclic variability - including significant numbers of misfires - that becomes more pronounced with increasing dilution. This variability has been shown to have both stochastic and deterministic components. Stochastic effects include turbulence, mixing variations, and the like, while the deterministic effect is primarily due to the nonlinear dependence of flame propagation rates and ignition characteristics on the charge composition, which is influenced by the composition of residual gases from prior cycles.
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Technical Paper

Axial NO2 Utilization Measurements within a Partial Flow Filter during Passive Regeneration

2017-03-28
2017-01-0988
Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with alternating open and plugged channels. A SpaciMS [1] instrument was used to measure the axial NO2 profiles within adjacent open and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the open and plugged channels, the axial soot load profile history could be assessed.
Technical Paper

Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation

2018-04-03
2018-01-0183
3D CFD spark-ignition IC engine simulations are extremely complex for the regular user. Truly-predictive CFD simulations for the turbulent flame combustion that solve fully coupled transport/chemistry equations may require large computational capabilities unavailable to regular CFD users. A solution is to use a simpler phenomenological model such as the G-equation that decouples transport/chemistry result. Such simulation can still provide acceptable and faster results at the expense of predictive capabilities. While the G-equation is well understood within the experienced modeling community, the goal of this paper is to document some of them for a novice or less experienced CFD user who may not be aware that phenomenological models of turbulent flame combustion usually require heavy tuning and calibration from the user to mimic experimental observations.
Journal Article

Combustion Studies with FACE Diesel Fuels: A Literature Review

2012-09-10
2012-01-1688
The CRC Fuels for Advanced Combustion Engines (FACE) Working Group has provided a matrix of experimental diesel fuels for use in studies on the effects of three parameters, Cetane number (CN), aromatics content, and 90 vol% distillation temperature (T90), on combustion and emissions characteristics of advanced combustion strategies. Various types of fuel analyses and engine experiments were performed in well-known research institutes. This paper reviews a collection of research findings obtained with these nine fuels. An extensive collection of analyses were performed by members of the FACE working group on the FACE diesel fuels as a means of aiding in understanding the linkage between fuel properties and combustion and emissions performance. These analyses included non-traditional chemical techniques as well as established ASTM tests. In a few cases, both ASTM tests and advanced analyses agreed that some design variables differed from their target values when the fuels were produced.
Technical Paper

Controlling Cyclic Combustion Variations in Lean-Fueled Spark-Ignition Engines

2001-03-05
2001-01-0257
This paper describes the reduction of cyclic combustion variations in spark-ignited engines, especially under idle conditions in which the air-fuel mixture is lean of stoichiometry. Under such conditions, the combination of residual cylinder gas and parametric variations (such as variations in fuel preparation) gives rise to significant combustion instabilities that may lead to customer-perceived engine roughness and transient emissions spikes. Such combustion instabilities may preclude operation at air-fuel ratios that would otherwise be advantageous for fuel economy and emissions. This approach exploits the recognition that a component of the observed combustion instability results from a noise-driven, nonlinear deterministic mechanism that can be actively stabilized by small feedback control actions which result in little if any additional use of fuel.
Technical Paper

DOE Plant-Wide Energy Assessment Results Related to the U.S. Automotive Industry

2006-04-03
2006-01-0594
Forty-nine plant-wide energy efficiency assessments have been undertaken under sponsorship of the U.S. Department of Energy's Industrial Technologies Program. Plant-wide assessments are comprehensive, systematic investigations of plant energy efficiency, including plant utility systems and process operations. Assessments in industrial facilities have highlighted opportunities for implementing best practices in industrial energy management, including the adoption of new, energy-efficient technologies and process and equipment improvements. Total annual savings opportunities of $201 million have been identified from the 40 completed assessments. Many of the participating industrial plants have implemented efficiency-improvement projects and already have realized total cost savings of more than $81 million annually. This paper provides an overview of the assessment efforts undertaken and presents a summary of the major energy and cost savings identified to date.
Technical Paper

Design and Development of a High-Efficiency Single Cylinder Natural Gas-Fueled Jet Ignition Engine

2020-01-24
2019-32-0565
The current energy climate has created a push toward reducing consumption of fossil fuels and lowering emissions output in power generation applications. Combined with the desire for a more distributed energy grid, there is currently a need for small displacement, high efficiency engines for use in stationary power generation. An enabling technology for achieving high efficiencies with spark ignited engines for such applications is the use of jet ignition which enables ultra-lean (λ > ~1.6) combustion via air dilution. This paper provides a comprehensive review of the development of a 390cc, high efficiency single cylinder natural gas-fueled jet ignition engine operating ultra-lean. The engine was developed as part of the Department of Energy’s Advanced Research Projects Agency–Energy (DOE ARPA-E) GENSETS program. Design choices for minimizing friction are highlighted as well as test results showing further friction reduction through downspeeding.
Technical Paper

Development of a Cold Start Fuel Penalty Metric for Evaluating the Impact of Fuel Composition Changes on SI Engine Emissions Control

2018-04-03
2018-01-1264
The U.S. Department of Energy’s Co-Optimization of Fuels and Engines initiative (Co-Optima) aims to simultaneously transform both transportation fuels and engines to maximize performance and energy efficiency. Researchers from across the DOE national laboratories are working within Co-Optima to develop merit functions for evaluating the impact of fuel formulations on the performance of advanced engines. The merit functions relate overall engine efficiency to specific measurable fuel properties and will serve as key tools in the fuel/engine co-optimization process. This work focused on developing a term for the Co-Optima light-duty boosted spark ignition (SI) engine merit function that captures the effects of fuel composition on emissions control system performance. For stoichiometric light-duty SI engines, the majority of NOx, NMOG, and CO emissions occur during cold start, before the three-way catalyst (TWC) has reached its “light-off” temperature.
Journal Article

Development of a Supercharged Octane Number and a Supercharged Octane Index

2023-04-11
2023-01-0251
Gasoline knock resistance is characterized by the Research and Motor Octane Number (RON and MON), which are rated on the CFR octane rating engine at naturally aspirated conditions. However, modern automotive downsized boosted spark ignition (SI) engines generally operate at higher cylinder pressures and lower temperatures relative to the RON and MON tests. Using the naturally aspirated RON and MON ratings, the octane index (OI) characterizes the knock resistance of gasolines under boosted operation by linearly extrapolating into boosted “beyond RON” conditions via RON, MON, and a linear regression K factor. Using OI solely based on naturally aspirated RON and MON tests to extrapolate into boosted conditions can lead to significant errors in predicting boosted knock resistance between gasolines due to non-linear changes in autoignition and knocking characteristics with increasing pressure conditions.
Technical Paper

Diesel Particulate Oxidation Model: Combined Effects of Volatiles and Fixed Carbon Combustion

2010-10-25
2010-01-2127
Diesel particulate samples were collected from a light duty engine operated at a single speed-load point with a range of biodiesel and conventional fuel blends. The oxidation reactivity of the samples was characterized in a laboratory reactor, and BET surface area measurements were made at several points during oxidation of the fixed carbon component of both types of particulate. The fixed carbon component of biodiesel particulate has a significantly higher surface area for the initial stages of oxidation, but the surface areas for the two particulates become similar as fixed carbon oxidation proceeds beyond 40%. When fixed carbon oxidation rates are normalized to total surface area, it is possible to describe the oxidation rates of the fixed carbon portion of both types of particulates with a single set of Arrhenius parameters. The measured surface area evolution during particle oxidation was found to be inconsistent with shrinking sphere oxidation.
Technical Paper

Dilute Combustion Control Using Spiking Neural Networks

2021-04-06
2021-01-0534
Dilute combustion with exhaust gas recirculation (EGR) in spark-ignition engines presents a cost-effective method for achieving higher levels of engine efficiency. At high levels of EGR, however, cycle-to-cycle variability (CCV) of the combustion process is exacerbated by sporadic occurrences of misfires and partial burns. Previous studies have shown that temporal deterministic patterns emerge at such conditions and certain combustion cycles have a significant influence over future events. Due to the complexity of the combustion process and the nature of CCV, harnessing all the deterministic information for control purposes has remained challenging even with physics based 0-D, 1-D, and high-fidelity computational fluid dynamics (CFD) models. In this study, we present a data-driven approach to optimize the combustion process by controlling CCV adjusting the cycle-to-cycle fuel injection quantity.
Journal Article

EGR Dilution and Fuel Property Effects on High-Efficiency Spark-Ignition Flames

2021-04-06
2021-01-0483
Modern spark ignition internal combustion engines rely on fast combustion rates and high dilution to achieve high brake thermal efficiencies. To accomplish this, new engine designs have moved towards increased tumble ratios and stroke-to-bore ratios. Increased tumble ratios correlate positively with increases in turbulent kinetic energy and improved fuel and residual gas mixing, all of which favor faster and more efficient combustion. Longer stroke-to-bore ratios allow higher geometric compression ratios and use of late intake valve closing to control peak compression pressures and temperatures. The addition of dilution to improve efficiency is limited by the resulting increase in combustion instabilities manifested by cycle-to-cycle variability.
Journal Article

Fuel Effects on Advanced Compression Ignition Load Limits

2021-09-21
2021-01-1172
In order to maximize the efficiency of light-duty gasoline engines, the Co-Optimization of Fuels and Engines (Co-Optima) initiative from the U.S. Department of Energy is investigating multi-mode combustion strategies. Multi-mode combustion can be describe as using conventional spark-ignited combustion at high loads, and at the part-load operating conditions, various advanced compression ignition (ACI) strategies are being investigated to increase efficiency. Of particular interest to the Co-Optima initiative is the extent to which optimal fuel properties and compositions can enable higher efficiency ACI combustion over larger portions of the operating map. Extending the speed-load range of these ACI modes can enable greater part-load efficiency improvements for multi-mode combustion strategies.
Technical Paper

Fuel-Specific Effect of Exhaust Gas Residuals on HCCI Combustion: A Modeling Study

2008-10-06
2008-01-2402
A modeling study was performed to investigate fuel-specific effects of exhaust gas recirculation (EGR) components on homogeneous charge compression ignition (HCCI) combustion at conditions relevant to the negative valve overlap (NVO) strategy using CHEMKIN-PRO. Four single-component fuels with well-established kinetic models were chosen: n-heptane, iso-octane, ethanol, and toluene. These fuels were chosen because they span a wide range of fuel chemistries, and produce a wide compositions range of complete stoichiometric products (CSP). The simulated engine conditions combined a typical spark ignition engine compression ratio (11.34) and high intake charge temperatures (500-550 K) that are relevant to NVO HCCI. It was found that over the conditions investigated, all the fuels had overlapping start of combustion (SOC) phasing, despite the wide range in octane number (RON = 0 to 120).
Journal Article

High Load Expansion of Catalytic EGR-Loop Reforming under Stoichiometric Conditions for Increased Efficiency in Spark Ignition Engines

2019-04-02
2019-01-0244
The use of fuel reformate from catalytic processes is known to have beneficial effects on the spark-ignited (SI) combustion process through enhanced dilution tolerance and decreased combustion duration, but in many cases reformate generation can incur a significant fuel penalty. In a previous investigation, the researchers showed that, by controlling the boundary conditions of the reforming catalyst, it was possible to minimize the thermodynamic expense of the reforming process, and in some cases, realize thermochemical recuperation (TCR), a form of waste heat recovery where exhaust heat is converted to usable chemical energy. The previous work, however, focused on a relatively light-load engine operating condition of 2000 rpm, 4 bar brake mean effective pressure (BMEP). The present investigation demonstrates that this operating strategy is applicable to higher engine loads, including boosted operation up to 10 bar BMEP.
Technical Paper

Impact of Delayed Spark Restrike on the Dynamics of Cyclic Variability in Dilute SI Combustion

2016-04-05
2016-01-0691
Spark-ignition (SI) engines can derive substantial efficiency gains from operation at high dilution levels, but sufficiently high-dilution operation increases the occurrence of misfires and partial burns, which induce higher levels of cyclic-variability in engine operation. This variability has been shown to have both stochastic and deterministic components, with residual fraction impacts on charge composition being the major source of the deterministic component through its non-linear effect on ignition and flame propagation characteristics. This deterministic coupling between cycles offers potential for next-cycle control approaches to allow operation near the edge of stability. This paper aims to understand the effect of spark strategies, specifically the use of a second spark (restrike) after the main spark, on the deterministic coupling between engine cycles by operating at high dilution levels using both excess air (i.e. lean combustion) and EGR.
X