Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Development of an Accelerated Ash Loading Protocol for Diesel Particulate Filters

2008-10-06
2008-01-2496
The accelerated ash loading of diesel particulate filters (DPFs) with diesel oxidation catalysts (DOCs) mounted upstream by lube-oil derived products was investigated using a single cylinder diesel engine and fuel blended with 5% lube oil. An ash loading protocol is developed which combines soot loading, active soot regeneration, and periodic shutdowns for filter weighing. Active regeneration is accomplished by exhaust injection of diesel fuel, initiated by a backpressure criteria and providing DPF temperatures up to 700°C. In developing this protocol, five DPFs of various combinations of substrates (cordierite, silicon carbide, and mullite) and washcoats (none, low PGM, and high PGM) are used and evaluated. The initial backpressure and rate of backpressure increase with ash varied with each of the DPFs and ash was observed to have an effect on the active soot light-off temperature for the catalyzed DPFs.
Journal Article

Effect of Accelerated Aging Rate on the Capture of Fuel-Borne Metal Impurities by Emissions Control Devices

2014-04-01
2014-01-1500
Small impurities in the fuel can have a significant impact on the emissions control system performance over the lifetime of the vehicle. Of particular interest in recent studies has been the impact of sodium, potassium, and calcium that can be introduced either through fuel constituents, such as biodiesel, or as lubricant additives. In a collaboration between the National Renewable Energy Laboratory and the Oak Ridge National Laboratory, a series of accelerated aging studies have been performed to understand the potential impact of these metals on the emissions control system. This paper explores the effect of the rate of accelerated aging on the capture of fuel-borne metal impurities in the emission control devices and the subsequent impact on performance. Aging was accelerated by doping the fuel with high levels of the metals of interest. Three separate evaluations were performed, each with a different rate of accelerated aging.
Journal Article

Effects of Oil Formulation, Oil Separator, and Engine Speed and Load on the Particle Size, Chemistry, and Morphology of Diesel Crankcase Aerosols

2016-04-05
2016-01-0897
The recirculation of gases from the crankcase and valvetrain can potentially lead to the entrainment of lubricant in the form of aerosols or mists. As boost pressures increase, the blow-by flow through both the crankcase and the valve cover increases. The resulting lubricant can then become part of the intake charge, potentially leading to fouling of intake components such as the intercooler and the turbocharger. The entrained aerosol which can contain the lubricant and soot may or may not have the same composition as the bulk lubricant. The complex aerodynamic processes that lead to entrainment can strip out heavy components or volatilize light components. Similarly, the physical size and numbers of aerosol particles can be dependent upon the lubricant formulation and engine speed and load. For instance, high rpm and load may increase not only the flow of gases but the amount of lubricant aerosol.
Technical Paper

Engine Operating Conditions, Fuel Property Effects, and Associated Fuel–Wall Interaction Dependencies of Stochastic Preignition

2023-10-31
2023-01-1615
This work for the Coordinating Research Council (CRC) explores dependencies on the opportunity for fuel to impinge on internal engine surfaces (i.e., fuel–wall impingement) as a function of fuel properties and engine operating conditions and correlates these data with measurements of stochastic preignition (SPI) propensity. SPI rates are directly coupled with laser–induced florescence measurements of dye-doped fuel dilution measurements of the engine lubricant, which provides a surrogate for fuel–wall impingement. Literature suggests that SPI may have several dependencies, one being fuel–wall impingement. However, it remains unknown if fuel-wall impingement is a fundamental predictor and source of SPI or is simply a causational factor of SPI. In this study, these relationships on SPI and fuel-wall impingement are explored using 4 fuels at 8 operating conditions per fuel, for 32 total test points.
Technical Paper

Fuel-Lubricant Interactions on the Propensity for Stochastic Pre-Ignition

2019-09-09
2019-24-0103
This work explores the impact of the interaction of lubricant and fuel properties on the propensity for stochastic pre-ignition (SPI). Findings are based on statistically significant changes in SPI tendency and magnitude, as determined by measurements of cylinder pressure. Specifically, lubricant detergents, lubricant volatility, fuel volatility, fuel chemical composition, fuel-wall impingement, and engine load were varied to study the physical and chemical effects of fuel-lubricant interactions on SPI tendency. The work illustrates that at low loads, with fuels susceptible to SPI events, lubricant detergent package effects on SPI were non-significant. However, with changes to fuel distillation, fuel-wall impingement, and most importantly engine load, lubricant detergent effects could be observed even at reduced loads This suggests that there is a thermal effect associated with the higher load operation.
Video

Ionic Liquids as Novel Lubricants or Lubricant Additives

2012-05-10
For internal combustion engines and industrial machinery, it is well recognized that the most cost-effective way of reducing energy consumption and extending service life is through lubricant development. This presentation summarizes our recent R&D achievements on developing a new class of candidate lubricants or oil additives ionic liquids (ILs). Features of ILs making them attractive for lubrication include high thermal stability, low vapor pressure, non-flammability, and intrinsic high polarity. When used as neat lubricants, selected ILs demonstrated lower friction under elastohydrodynamic lubrication and less wear at boundary lubrication benchmarked against fully-formulated engine oils in our bench tests. More encouragingly, a group of non-corrosive, oil-miscible ILs has recently been developed and demonstrated multiple additive functionalities including anti-wear and friction modifier when blended into hydrocarbon base oils.
Technical Paper

Lubricating Oil Consumption on the Standard Road Cycle

2013-04-08
2013-01-0884
Automobile manufacturers strive to minimize oil consumption from their engines due to the need to maintain emissions compliance over the vehicle life. Engine oil can contribute directly to organic gas and particle emissions as well as accelerate emissions degradation due to catalyst poisoning. During the Department of Energy Intermediate Ethanol Blends Catalyst Durability program, vehicles were aged using the Standard Road Cycle (SRC). In this program, matched sets of three or four vehicles were acquired; each vehicle of a set was aged on ethanol-free retail gasoline, or the same base gasoline blended with 10, 15, or 20% ethanol (E0, E10, E15, E20). The primary purpose of the program was to assess any changes in tailpipe emissions due to the use of increased levels of ethanol. Oil consumption was tracked during the program so that any measured emissions degradation could be appropriately attributed to fuel use or to excessive oil consumption.
Technical Paper

Phosphorous Poisoning and Phosphorous Exhaust Chemistry with Diesel Oxidation Catalysts

2005-04-11
2005-01-1758
Phosphorous in diesel exhaust is derived via engine oil consumption from the zinc dialkyldithiophosphate (ZDDP) oil additive used for engine wear control. Phosphorous present in the engine exhaust can react with an exhaust catalyst and cause loss of performance through masking or chemical reaction. The primary effect is loss of light-off or low temperature performance. Although the amount of ZDDP used in lube oil is being reduced, it appears that there may is a minimum level of ZDDP needed for engine durability. One of the ways of reducing the effects of the resulting phosphorous on catalysts might be to alter the chemical state of the phosphorous to a less damaging form or to develop catalysts which are more resistant to phosphorous poisoning. In this study, lube oil containing ZDDP was added at an accelerated rate through a variety of engine pathways to simulate various types of engine wear or oil disposal practices.
Technical Paper

The Roles of Phosphorus and Soot on the Deactivation of Diesel Oxidation Catalysts

2009-04-20
2009-01-0628
The deactivation of diesel oxidation catalysts (DOCs) by soot contamination and lube-oil derived phosphorus poisoning is investigated. Pt/CeO2/γ-AI2O3 DOCs aged using three different protocols developed by the authors and six high mileage field-returned DOCs of similar formulation are evaluated for THC and CO oxidation performance using a bench-flow reactor. Collectively, these catalysts exhibit a variety of phosphorus and soot morphologies contributing to performance deactivation.
Technical Paper

The Use of Small Engines as Surrogates for Research in Aftertreatment, Combustion, and Fuels

2006-11-13
2006-32-0035
In this research, small, single cylinder engines have been used to simulate larger engines in the areas of aftertreatment, combustion, and fuel formulation effects. The use of small engines reduces overall research cost and allows more rapid experiments to be run. Because component costs are lower, it is also possible to investigate more variations and to sacrifice components for materials characterization and for subsequent experiments. Using small engines in this way is very successful in some cases. In other cases, limitations of the engines influence the results and need to be accounted for in the experimental design and data analysis. Some of the results achieved or limitations found may be of interest to the small engine market, and this paper is offered as a summary of the authors' research in these areas. Research is being conducted in two areas. First, small engines are being used to study the rapid aging and poisoning of exhaust aftertreatment catalysts.
X