Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

2013-04-08
2013-01-1578
Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Technical Paper

A Comparative Life Cycle Assessment of Magnesium Front End Autoparts: A Revision to 2010-01-0275

2012-12-31
2012-01-2325
The Magnesium Front End Research and Development (MFERD) project under the sponsorship of Canada, China, and USA aims to develop key technologies and a knowledge base for increased use of magnesium in automobiles. The primary goal of this life cycle assessment (LCA) study is to compare the energy and potential environmental impacts of advanced magnesium based front end parts of a North American-built 2007 GM-Cadillac CTS using the current steel structure as a baseline. An aluminium front end is also considered as an alternate light structure scenario. A “cradle-to-grave” LCA is conducted by including primary material production, semi-fabrication production, autoparts manufacturing and assembly, transportation, use phase, and end-of-life processing of autoparts. This LCA study was done in compliance with international standards ISO 14040:2006 [1] and ISO 14044:2006 [2].
Technical Paper

A Failure Criterion for Stretch Bendability of Advanced High Strength Steels

2006-04-03
2006-01-0349
Studies in an Angular Stretch Bend Test (ASBT) have demonstrated that the failure location moves from the side wall to punch nose area. This occurs as the R/T ratio decreases below a certain limit and applies to most low carbon steels with the exception of Dual Phase (DP) steels. Such behavior in DP steels indicates that bending effects have a severe impact on the formability of DP materials. Therefore, the traditional criterion using the forming limit curve (FLC) is not suitable to assess the formability at punch radius areas for DP steels due in part to its uniqueness of unconventional microstructures. In this paper, a new failure criterion, ‘Bending-modified’ FLC (BFLC), is proposed by extending the traditional FLC using the “Stretch Bendability Index” (SBI) concept for the stretch bendability assessment.
Technical Paper

A Life-Cycle-Based Environmental Evaluation: Materials in New Generation Vehicles

2000-03-06
2000-01-0595
This project team conducted a life-cycle-based environmental evaluation of new, lightweight materials (e.g., titanium, magnesium) used in two concept 3XVs -- i.e., automobiles that are three times more fuel efficient than today's automobiles -- that are being designed and developed in support of the Partnership for a New Generation of Vehicles (PNGV) program. The two concept vehicles studied were the DaimlerChrysler ESX2 and the Ford P2000. Data for this research were drawn from a wide range of sources, including: the two automobile manufacturers; automobile industry reports; government and proprietary databases; past life-cycle assessments; interviews with industry experts; and models.
Technical Paper

A New Manufacturing Technology for Induction Machine Copper Rotors

2002-06-03
2002-01-1888
The benefits of energy and operational cost savings from using copper rotors are well recognized. The main barrier to die casting copper rotors is short mold life. This paper introduces a new approach for manufacturing copper-bar rotors. Either copper, aluminum, or their alloys can be used for the end rings. Both solid-core and laminated-core rotors were built. High quality joints of aluminum to copper were produced and evaluated. This technology can also be used for manufacturing aluminum bar rotors with aluminum end rings. Further investigation is needed to study the lifetime reliability of the joint. The improvement of manufacturing fixture through prototype test is also required.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

A Study on Vehicle Elastomer Mount Preloading and Impact Response with Test Validation

2005-04-11
2005-01-1415
A variety of elastomer mounts are being used for vehicles as isolators/dampers between body and frame, on the engine cradle, etc. These vehicle flexible mounts, made of mainly rubber materials and housed in a metallic tube, are indispensable components affecting the quality of the vehicle ride, noise and vibration. In the auto industry, the usual practice when designing vehicle flexible mounts is to minimally reflect impact considerations in the mount design features. However, in most high-speed vehicle crash events where the mounts fail, the crash responses, including occupant injury severity, are known to be very different from the responses of non-failure cases. Even in low-speed vehicle impact cases, excessive deformation of the flexible mounts could cause significant variance in the compliance of the vehicle acceleration level to the air-bag firing and timing threshold requirements.
Technical Paper

Advanced Materials Characterization at the High Temperature Materials Laboratory

1999-04-28
1999-01-2256
The HTML (High Temperature Materials Laboratory) is a U.S. Department of Energy User Facility, offering opportunities for in-depth characterization of advanced materials, specializing in high-temperature-capable structural ceramics. Available are electron microscopy for micro-structural and microchemical analysis, equipment for measurement of the thermophysical and mechanical properties of ceramics to elevated temperatures, X-ray and neutron diffraction for structure and residual stress analysis, and high speed grinding machines with capability for measurement of component shape, tolerances, surface finish, and friction and wear properties. This presentation will focus on structural materials characterization, illustrated with examples of work performed on heat engine materials such as silicon nitride, industrial refractories, metal-and ceramic-matrix composites, and structural alloys.
Journal Article

Analysis of Residual Stress Profiles in the Cylinder Web Region of an As-Cast V6 Al Engine Block with Cast-In Fe Liners Using Neutron Diffraction

2011-04-12
2011-01-0036
Continuous efforts to develop a lightweight alloy suitable for the most demanding applications in automotive industry resulted in a number of advanced aluminum (Al) and magnesium alloys and manufacturing routes. One example of this is the application of 319 Al alloy for production of 3.6L V6 gasoline engine blocks. Aluminum is sand cast around Fe-liner cylinder inserts, prior to undergoing the T7 heat treatment process. One of the critical factors determining the quality of the final product is the type, level, and profile of residual stresses along the Fe liners (or extent of liner distortion) that are always present in a cast component. In this study, neutron diffraction was used to characterize residual stresses along the Al and the Fe liners in the web region of the cast engine block. The strains were measured both in Al and Fe in hoop, radial, and axial orientations. The stresses were subsequently determined using generalized Hooke's law.
Technical Paper

Analysis of Semivolatile Organic Compounds in Diesel Exhaust Using a Novel Sorption and Extraction Method

1999-10-25
1999-01-3534
As interest has grown in diesel emissions and diesel engine aftertreatment, so has the importance of analyzing all components of the exhaust. One of the more costly and difficult measurements to make is the collection and analysis of semivolatile organic compounds (SOCs) in the exhaust. These compounds include alkane and alkenes from C12-C24, and the 2-5 ring polycyclic aromatic hydrocarbons (PAH). These compounds can be present in both the particulate (i.e. on the filter) and gaseous phase, and cannot be collected with bag samples. Typically, a sorbent is used downstream of the particulate collection filters to collect these compounds. Sorbent phases include polyurethane foam (PUF), Tenax™, XAD-type resins, and activated carbon. The SOCs are removed from the sorbent either by solvent extraction (PUF and XAD) or thermal desorption (Tenax™ and activated carbon). Each of these methods have advantages and disadvantages.
Technical Paper

Catalysis by Design - Theoretical and Experimental Studies of Model Catalysts

2007-04-16
2007-01-1018
The development of new catalytic materials is still dominated by trial and error methods, even though the experimental and theoretical bases for their characterization have improved dramatically in recent years. Although it has been successful, the empirical development of catalytic materials is time consuming and expensive with no guarantee of success. We have been exploring computationally complex but experimentally simple systems to establish a “catalysis by design” protocol that combines the power of theory and experiment. We hope to translate the fundamental insights directly into a complete catalyst system that is technologically relevant. The essential component of this approach is that the catalysts are iteratively examined by both theoretical and experimental methods.
Technical Paper

Collaborative Development of Lightweight Metal and Alloys for Automotive Applications

2002-06-03
2002-01-1938
In September 1993, the Partnership for a New Generation of Vehicles (PNGV) program, initiated a cooperative research and development (R&D) program between the federal government and the United States Council Automotive Research (USCAR) to develop automotive technologies to reduce the nation's dependence on petroleum and reduce emissions of greenhouse gases by improving fuel economy. A key enabler for the attainment of these goals is a significant reduction in vehicle weight. Thus the major focus of the PNGV materials program is the development of materials and technologies that would result in the reduction of vehicle weight by up to 40%. The Automotive Lightweighting Materials (ALM) Program in the Office of Advanced Automotive Technologies (OAAT) of the Department of Energy (DOE), the PNGV Materials Technical Team and the United States Automotive Materials Partnership (USAMP) collaborate to conduct research and development on these materials.
Journal Article

Compatibility Assessment of Elastomer Materials to Test Fuels Representing Gasoline Blends Containing Ethanol and Isobutanol

2014-04-01
2014-01-1462
The compatibility of elastomeric materials used in fuel storage and dispensing applications was determined for test fuels representing neat gasoline and gasoline blends containing 10 and 17 vol.% ethanol, and 16 and 24 vol.% isobutanol. The actual test fuel chemistries were based on the aggressive formulations described in SAE J1681 for oxygenated gasoline. Elastomer specimens of fluorocarbon, fluorosilicone, acrylonitrile rubber (NBR), polyurethane, neoprene, styrene butadiene rubber (SBR) and silicone were exposed to the test fuels for 4 weeks at 60°C. After measuring the wetted volume and hardness, the specimens were dried for 20 hours at 60°C and then remeasured for volume and hardness. Dynamic mechanical analysis (DMA) was also performed to determine the glass transition temperature (Tg). Comparison to the original values showed that all elastomer materials experienced volume expansion and softening when wetted by the test fuels.
Journal Article

Compatibility Assessment of Elastomeric Infrastructure Materials with Neat Diesel and a Diesel Blend Containing 20 Percent Fast Pyrolysis Bio-oil

2015-04-14
2015-01-0888
The compatibility of elastomer materials used in fuel storage and dispensing applications was determined for an off-highway diesel fuel and a blend containing 20% bio-oil (Bio20) derived from a fast pyrolysis process. (This fuel blend is not to be confused with B20, which is a blend of diesel fuel with 20% biodiesel.) The elastomer types evaluated in this study included fluorocarbon, fluorosilicone, acrylonitrile rubber (NBR), styrene butadiene rubber (SBR), polyurethane, neoprene, and silicone. All of these elastomer types are used in sealing applications, but some, like the nitrile rubbers are also common hose materials. The elastomer specimens were exposed to the two fuel types for 4 weeks at 60°C. After measuring the wetted volume and hardness, the specimens were dried for 65 hours at 60°C and then remeasured. A solubility analysis was performed to better understand the performance of plastic materials in fuel blends composed of bio-oil and diesel.
Journal Article

Compatibility Assessment of Plastic Infrastructure Materials to Test Fuels Representing Gasoline Blends Containing Ethanol and Isobutanol

2014-04-01
2014-01-1465
The compatibility of plastic materials used in gasoline storage and dispensing applications was determined for test fuels representing neat gasoline (Fuel C), and blends containing 25% ethanol (CE25a), 16% isobutanol (CiBu16a), and 24% isobutanol (CiBu24a). A solubility analysis was also performed and compared to the volume swell results obtained from the test fuel exposures. The plastic specimens were exposed to each test fuel for16 weeks at 60°C. After measuring the wetted volume and hardness, the specimens were dried for 65 hours at 60°C and then remeasured for volume and hardness. Dynamic mechanical analysis (DMA), which measures the storage modulus as a function of temperature, was also performed on the dried specimens to determine the temperature associated with the onset of the glass-to-rubber transition (Tg). For many of the plastic materials, the solubility analysis was able to predict the relative volume swell for each test fuel.
Journal Article

Compatibility Assessment of Plastic Infrastructure Materials with Off-Highway Diesel and a Diesel Blend Containing 20 Percent Fast Pyrolysis Bio-Oil

2015-04-14
2015-01-0893
The compatibility of plastic materials used in fuel storage and dispensing applications was determined for an off-highway diesel fuel and a blend containing 20% bio-oil (Bio20) derived from a fast pyrolysis process. Bio20 is not to be confused with B20, which is a diesel blend containing 20% biodiesel. The feedstock, processing, and chemistry of biodiesel are markedly different from bio-oil. Plastic materials included those identified for use as seals, coatings, piping and fiberglass resins, but many are also used in vehicle fueling systems. The plastic specimens were exposed to the two fuel types for 16 weeks at 60°C. After measuring the wetted volume and hardness, the specimens were dried for 65 hours at 60°C and then remeasured to determine extent of property change. A solubility analysis was performed to better understand the performance of plastic materials in fuel blends composed of bio-oil and diesel.
Journal Article

Compatibility of Dimethyl Ether (DME) and Diesel Blends with Fuel System Polymers: A Hansen Solubility Analysis Approach

2016-04-05
2016-01-0835
The compatibility of notable infrastructure elastomers and plastics with DME and its blends with diesel fuel were examined using solubility analysis. The elastomer materials were fluorocarbon, acrylonitrile butadiene rubber (NBR), styrene butadiene (SBR), neoprene, polyurethane and silicone. Plastic materials included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), polybutylene terephthalate (PBT), polypropylene (PP), high density polyethylene (HDPE), along with several nylon grades and thermosetting resins. These materials have been rigorously studied with other fuel types, and their volume change results were found to correspond well with their predicted solubility levels. A Hansen solubility analysis was performed for each material with DME, diesel, and blends of both fuel components.
Journal Article

Compatibility of Fuel System Elastomers with Bio-Blendstock Fuel Candidates Using Hansen Solubility Analysis

2017-03-28
2017-01-0802
The compatibility of key fuel system infrastructure elastomers with promising bio-blendstock fuel candidates was examined using Hansen solubility analysis. Thirty-four candidate fuels were evaluated in this study including multiple alcohols, esters, ethers, ketones, alkenes and one alkane. These compounds were evaluated as neat molecules and as blends with the gasoline surrogate, dodecane and a mix of dodecane and 10% ethanol (E10D). The elastomer materials were fluorocarbon, acrylonitrile butadiene rubber (NBR), styrene butadiene (SBR), neoprene, polyurethane and silicone. These materials have been rigorously studied with other fuel types, and their measured volume change results were found to correspond well with their predicted solubility levels. The alcohols showed probable compatibility with fluorocarbon and polyurethane, but are not likely to be compatible at low blend levels with NBR and SBR.
Technical Paper

Corrosion Behavior of Mixed-Metal Joint of Magnesium to Mild Steel by Ultrasonic Spot Welding

2012-04-16
2012-01-0472
Development of reliable magnesium (Mg) to steel joining methods is one of the critical issues in boarder applications of Mg in automotive body construction. However, due to the large difference of melting temperatures of Mg and steel, fusion welding between two metals is very challenging. Ultrasonic spot welding (USW) has been demonstrated to join Mg to steel without melting and to achieve strong joints. However, galvanic corrosion between Mg and steel is inevitable but not well quantified. In this study, corrosion test of ultrasonic spot welds between 1.6-mm-thick Mg AZ31B-H24 and 0.8-mm-thick galvanized mild steel was conducted. No specific corrosion protection was applied in order to study the worst corrosion behavior. Corrosion test was conducted with an automotive cyclic corrosion test, which includes cyclic exposures of dipping in the salt bath, air drying, then a constant humidity environment. Lap shear strength of the joints decreased linearly with the cycles.
Journal Article

Corrosion Behavior of Mixed-Metal Joint of Magnesium to Mild Steel by Ultrasonic Spot Welding with and without Adhesives

2013-04-08
2013-01-1017
Development of reliable magnesium (Mg) to steel joining methods is one of the critical issues in broader applications of Mg in automotive body construction. Ultrasonic spot welding (USW) has been demonstrated successfully to join Mg to steel and to achieve strong joints. In this study, corrosion test of ultrasonic spot welds between 1.6 mm thick Mg AZ31B-H24 and 0.8 mm thick galvanized mild steel, without and with adhesive, was conducted. Adhesive used was a one-component, heat-cured epoxy material, and was applied between overlapped sheets before USW. Corrosion test was conducted with an automotive cyclic corrosion test, which includes cyclic exposures of dipping in the 0.5% sodium chloride (NaCl) bath, a constant humidity environment, and a drying period. Lap shear strength of the joints decreased with the cycles of corrosion exposure. Good joint strengths were retained at the end of 30-cycle test.
X