Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

2013-04-08
2013-01-1578
Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Technical Paper

A Comparative Life Cycle Assessment of Magnesium Front End Autoparts: A Revision to 2010-01-0275

2012-12-31
2012-01-2325
The Magnesium Front End Research and Development (MFERD) project under the sponsorship of Canada, China, and USA aims to develop key technologies and a knowledge base for increased use of magnesium in automobiles. The primary goal of this life cycle assessment (LCA) study is to compare the energy and potential environmental impacts of advanced magnesium based front end parts of a North American-built 2007 GM-Cadillac CTS using the current steel structure as a baseline. An aluminium front end is also considered as an alternate light structure scenario. A “cradle-to-grave” LCA is conducted by including primary material production, semi-fabrication production, autoparts manufacturing and assembly, transportation, use phase, and end-of-life processing of autoparts. This LCA study was done in compliance with international standards ISO 14040:2006 [1] and ISO 14044:2006 [2].
Technical Paper

A Current Source Inverter Based Motor Drive for EV/HEV Applications

2011-04-12
2011-01-0346
The voltage source inverter (VSI) possesses several drawbacks that make it difficult to meet the requirements of automotive applications for inverter volume, lifetime, and cost. The VSI requires a very high performance dc bus capacitor that is costly and bulky. Other characteristics of the VSI not only negatively impact its own reliability but also that of the motor as well as motor efficiency. These problems could be eliminated or significantly mitigated by the use of the current source inverter (CSI). The CSI doesn't require any dc bus capacitors but uses three small ac filter capacitors and an inductor as the energy storage component, thus avoiding many of the drawbacks of the VSI. The CSI offers several inherent advantages that could translate into a substantial reduction in inverter cost and volume, increased reliability, a much higher constant-power speed range, and improved motor efficiency and lifetime.
Technical Paper

A Failure Criterion for Stretch Bendability of Advanced High Strength Steels

2006-04-03
2006-01-0349
Studies in an Angular Stretch Bend Test (ASBT) have demonstrated that the failure location moves from the side wall to punch nose area. This occurs as the R/T ratio decreases below a certain limit and applies to most low carbon steels with the exception of Dual Phase (DP) steels. Such behavior in DP steels indicates that bending effects have a severe impact on the formability of DP materials. Therefore, the traditional criterion using the forming limit curve (FLC) is not suitable to assess the formability at punch radius areas for DP steels due in part to its uniqueness of unconventional microstructures. In this paper, a new failure criterion, ‘Bending-modified’ FLC (BFLC), is proposed by extending the traditional FLC using the “Stretch Bendability Index” (SBI) concept for the stretch bendability assessment.
Technical Paper

A Life-Cycle-Based Environmental Evaluation: Materials in New Generation Vehicles

2000-03-06
2000-01-0595
This project team conducted a life-cycle-based environmental evaluation of new, lightweight materials (e.g., titanium, magnesium) used in two concept 3XVs -- i.e., automobiles that are three times more fuel efficient than today's automobiles -- that are being designed and developed in support of the Partnership for a New Generation of Vehicles (PNGV) program. The two concept vehicles studied were the DaimlerChrysler ESX2 and the Ford P2000. Data for this research were drawn from a wide range of sources, including: the two automobile manufacturers; automobile industry reports; government and proprietary databases; past life-cycle assessments; interviews with industry experts; and models.
Technical Paper

A New Manufacturing Technology for Induction Machine Copper Rotors

2002-06-03
2002-01-1888
The benefits of energy and operational cost savings from using copper rotors are well recognized. The main barrier to die casting copper rotors is short mold life. This paper introduces a new approach for manufacturing copper-bar rotors. Either copper, aluminum, or their alloys can be used for the end rings. Both solid-core and laminated-core rotors were built. High quality joints of aluminum to copper were produced and evaluated. This technology can also be used for manufacturing aluminum bar rotors with aluminum end rings. Further investigation is needed to study the lifetime reliability of the joint. The improvement of manufacturing fixture through prototype test is also required.
Journal Article

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods

2010-04-12
2010-01-1266
Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple “cold” start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

A Soft-Switched DC/DC Converter for Fuel Cell Vehicle Applications*

2002-06-03
2002-01-1903
Fuel cell-powered electric vehicles (FCPEV) require an energy storage device to start up the fuel cells and to store the energy captured during regenerative braking. Low-voltage (12 V) batteries are preferred as the storage device to maintain compatibility with the majority of today's automobile loads. A dc/dc converter is therefore needed to interface the low-voltage batteries with the fuel cell-powered higher-voltage dc bus system (255 V ∼ 425 V), transferring energy in either direction as required. This paper presents a soft-switched, isolated bi-directional dc/dc converter developed at Oak Ridge National Laboratory for FCPEV applications. The converter employs dual half-bridges interconnected with an isolation transformer to minimize the number of switching devices and their associated gate drive requirements. Snubber capacitors including the parasitic capacitance of the switching devices and the transformer leakage inductance are utilized to achieve zero-voltage switching (ZVS).
Technical Paper

A Systems Approach to Life Cycle Truck Cost Estimation

2006-10-31
2006-01-3562
A systems-level modeling framework developed to estimate the life cycle cost of medium- and heavy-duty trucks is discussed in this paper. Costs are estimated at a resolution of five major subsystems and 30+ subsystems, each representing a specific manufacturing technology. Interrelationships among various subsystems affecting cost are accounted for. Results of a specific Class 8 truck are finally discussed to demonstrate the modeling framework's capability, including the analysis of cost-effectiveness of some of the competing alternative system design options being considered by the industry today.
Technical Paper

Advanced Materials Characterization at the High Temperature Materials Laboratory

1999-04-28
1999-01-2256
The HTML (High Temperature Materials Laboratory) is a U.S. Department of Energy User Facility, offering opportunities for in-depth characterization of advanced materials, specializing in high-temperature-capable structural ceramics. Available are electron microscopy for micro-structural and microchemical analysis, equipment for measurement of the thermophysical and mechanical properties of ceramics to elevated temperatures, X-ray and neutron diffraction for structure and residual stress analysis, and high speed grinding machines with capability for measurement of component shape, tolerances, surface finish, and friction and wear properties. This presentation will focus on structural materials characterization, illustrated with examples of work performed on heat engine materials such as silicon nitride, industrial refractories, metal-and ceramic-matrix composites, and structural alloys.
Journal Article

Analysis of Residual Stress Profiles in the Cylinder Web Region of an As-Cast V6 Al Engine Block with Cast-In Fe Liners Using Neutron Diffraction

2011-04-12
2011-01-0036
Continuous efforts to develop a lightweight alloy suitable for the most demanding applications in automotive industry resulted in a number of advanced aluminum (Al) and magnesium alloys and manufacturing routes. One example of this is the application of 319 Al alloy for production of 3.6L V6 gasoline engine blocks. Aluminum is sand cast around Fe-liner cylinder inserts, prior to undergoing the T7 heat treatment process. One of the critical factors determining the quality of the final product is the type, level, and profile of residual stresses along the Fe liners (or extent of liner distortion) that are always present in a cast component. In this study, neutron diffraction was used to characterize residual stresses along the Al and the Fe liners in the web region of the cast engine block. The strains were measured both in Al and Fe in hoop, radial, and axial orientations. The stresses were subsequently determined using generalized Hooke's law.
Journal Article

Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies for Medium- and Heavy-Duty Trucks Using Characteristic Drive Cycle Data

2012-04-16
2012-01-0361
Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest.
Technical Paper

Assessing Grid Impact of Battery Electric Vehicle Charging Demand Using GPS-Based Longitudinal Travel Survey Data

2014-04-01
2014-01-0343
This paper utilizes GPS tracked multiday travel activities to estimate the temporal distribution of electricity loads and assess battery electric vehicle (BEV) grid impacts at a significant market penetration level. The BEV load and non-PEV load vary by time of the day and day of the week. We consider two charging preferences: home priority assumes BEV drivers prefer charging at home and would not charge at public charging stations unless the state of charge (SOC) of the battery is not sufficient to cover the way back to home; and charging priority does not require drivers to defer charging to home and assumes drivers will utilize the first available charging opportunity. Both home and charging priority scenarios show an evening peak demand. Charging priority scenario also shows a morning peak on weekdays, possibly due to workplace charging.
Technical Paper

Catalysis by Design - Theoretical and Experimental Studies of Model Catalysts

2007-04-16
2007-01-1018
The development of new catalytic materials is still dominated by trial and error methods, even though the experimental and theoretical bases for their characterization have improved dramatically in recent years. Although it has been successful, the empirical development of catalytic materials is time consuming and expensive with no guarantee of success. We have been exploring computationally complex but experimentally simple systems to establish a “catalysis by design” protocol that combines the power of theory and experiment. We hope to translate the fundamental insights directly into a complete catalyst system that is technologically relevant. The essential component of this approach is that the catalysts are iteratively examined by both theoretical and experimental methods.
Technical Paper

Characterization of GDI PM during Vehicle Start-Stop Operation

2019-01-15
2019-01-0050
As the fuel economy regulations increase in stringency, many manufacturers are implementing start-stop operation to enhance vehicle fuel economy. During start-stop operation, the engine shuts off when the vehicle is stationary for more than a few seconds. When the brake is released by the driver, the engine restarts. Depending on traffic conditions, start-stop operation can result in fuel savings from a few percent to close to 10%. Gasoline direct injection (GDI) engines are also increasingly available on light-duty vehicles. While GDI engines offer fuel economy advantages over port fuel injected (PFI) engines, they also tend to have higher PM emissions, particularly during start-up transients. Thus, there is interest in evaluating the effect of start-stop operation on PM emissions. In this study, a 2.5L GDI vehicle was operated over the FTP75 drive cycle.
Technical Paper

Chrysler 45RFE a New Generation Light Truck Automatic Transmission

1999-03-01
1999-01-1260
The 45RFE is a new generation electronically controlled rear wheel drive automatic transmission. It employs real-time feedback, closed-loop modulation of shift functions to achieve outstanding shift quality and to meet demanding durability goals. It uses no shift valves; all friction element applications are effected with high-flow electro-hydraulic solenoid valves. A unique gear train arrangement of three planetary carriers allows all sun gears and annulus gears to have the same number of teeth respectively and use a common pinion gear in all carriers, resulting in significant manufacturing simplification. The three-planetary system is designed for four forward ratios of 3.00, 1.67, 1.00 and 0.75 and one reverse gear ratio equal to the low gear ratio. A fifth ratio of 1.50 is used only in certain kick-down shift sequences for highway passing. A sixth forward ratio, an additional overdrive ratio of 0.67, is available in the hardware.
Technical Paper

Collaborative Development of Lightweight Metal and Alloys for Automotive Applications

2002-06-03
2002-01-1938
In September 1993, the Partnership for a New Generation of Vehicles (PNGV) program, initiated a cooperative research and development (R&D) program between the federal government and the United States Council Automotive Research (USCAR) to develop automotive technologies to reduce the nation's dependence on petroleum and reduce emissions of greenhouse gases by improving fuel economy. A key enabler for the attainment of these goals is a significant reduction in vehicle weight. Thus the major focus of the PNGV materials program is the development of materials and technologies that would result in the reduction of vehicle weight by up to 40%. The Automotive Lightweighting Materials (ALM) Program in the Office of Advanced Automotive Technologies (OAAT) of the Department of Energy (DOE), the PNGV Materials Technical Team and the United States Automotive Materials Partnership (USAMP) collaborate to conduct research and development on these materials.
Journal Article

Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

2014-09-30
2014-01-2326
Two hybrid powertrain configurations, including parallel and series hybrids, were simulated for fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving conditions. A comprehensive set of component models describing engine fuel consumption, emissions control, battery energy, and accessory power demand interactions was developed and integrated with the simulated hybrid trucks to identify heavy-duty (HD) hybrid technology barriers. The results show that series hybrid is absolutely negative for fuel-economy improvement of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical).
Technical Paper

Comparative Urban Drive Cycle Simulations of Light-Duty Hybrid Vehicles with Gasoline or Diesel Engines and Emissions Controls

2013-04-08
2013-01-1585
We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines. Our simulations utilize previously published models of transient engine-out emissions and models of aftertreatment devices for both stoichiometric and lean exhaust. Fuel consumption and emissions were estimated for comparable gasoline and diesel light-duty hybrid electric vehicles operating over single and multiple urban drive cycles. Comparisons between the gasoline and diesel vehicle fuel consumptions and emissions were used to identify potential advantages and technical barriers for diesel hybrids.
X