Refine Your Search

Topic

Author

Search Results

Technical Paper

A 1-D Platform to Simulate the Effects of Dedicated EGR on SI Engine Combustion

2017-03-28
2017-01-0524
The thermal efficiency of spark-ignition engines can be enhanced by increasing the rate of exhaust gas recirculation (EGR) such that the low temperature combustion regime could be achieved. However, there is an upper limit on the amount of EGR rate, beyond which flame speed becomes slow and unstable, and local quenching starts to hurt the combustion stability, efficiency, and emission. To resolve this issue, the concept of dedicated EGR has been proposed previously to be an effective way to enhance flame propagation under lean burn condition with even higher levels of EGR with reformate hydrogen and carbon monoxide. In this study, the effects of thermochemical fuel reforming on the reformate composition under rich conditions (1.0 < ϕ < 2.0) have been studied using detailed chemistry for iso-octane, as the representative component for gasoline.
Technical Paper

A Mesoscopic-Stress Based Fatigue Limit Theory - A Revised Dang Van's Model

2014-04-01
2014-01-0902
Dang Van (Dang Van et al., 1982 and Dang Van, 1993) states that for an infinite lifetime (near fatigue limit), crack nucleation in slip bands may occur at the most unfavorable oriented grains, which are subject to plastic deformation even if the macroscopic stress is elastic. Since the residual stresses in these plastically deformed grains are induced by the restraining effect of the adjacent grains, it is assumed that the residual stresses are stabilized at a mesoscopic level. These stresses are currently approximated by the macroscopic hydrostatic stress defined by the normal stresses to the faces of an octahedral element oriented with the faces symmetric to the principal axis; mathematically they are equal to each other and they are the average of the principal stresses.
Journal Article

A Methodology for Fatigue Life Estimation of Linear Vibratory Systems under Non-Gaussian Loads

2017-03-28
2017-01-0197
Fatigue life estimation, reliability and durability are important in acquisition, maintenance and operation of vehicle systems. Fatigue life is random because of the stochastic load, the inherent variability of material properties, and the uncertainty in the definition of the S-N curve. The commonly used fatigue life estimation methods calculate the mean (not the distribution) of fatigue life under Gaussian loads using the potentially restrictive narrow-band assumption. In this paper, a general methodology is presented to calculate the statistics of fatigue life for a linear vibratory system under stationary, non-Gaussian loads considering the effects of skewness and kurtosis. The input loads are first characterized using their first four moments (mean, standard deviation, skewness and kurtosis) and a correlation structure equivalent to a given Power Spectral Density (PSD).
Technical Paper

A Rigid Shearographic Endosscopic for Applications

2005-04-11
2005-01-0488
Shearography has been proved to be highly effective for nondestructive testing (NDT), especially for NDT of composite materials used in the automotive and aerospace engineering. While its application in material testing and material research has already achieved more and more acceptance in research and industry, its applications are mainly limited to the inspection and testing of an object surface which can directly be observed by a shearographic camera. Its application is mainly limited to inspect and test an object surface which can directly be observed by a shearographic camera. It is impossible to inspect an internal surface of a container. If the reflected light of the surface, which has to be examined, can’t reach the shearographic camera there is still no inspection possible. This paper presents the development of a rigid shearographic endoscope. The development enabled shearographic inspection on both external and internal surfaces of objects.
Journal Article

Aerodynamic Shape Optimization of an SUV in early Development Stage using a Response Surface Method

2014-09-30
2014-01-2445
In the development of an FAW SUV, one of the goals is to achieve a state of the art drag level. In order to achieve such an aggressive target, feedback from aerodynamics has to be included in the early stage of the design decision process. The aerodynamic performance evaluation and improvement is mostly based on CFD simulation in combination with some wind tunnel testing for verification of the simulation results. As a first step in this process, a fully detailed simulation model is built. The styling surface is combined with engine room and underbody detailed geometry from a similar size existing vehicle. From a detailed analysis of the flow field potential areas for improvement are identified and five design parameters for modifying overall shape features of the upper body are derived. In a second step, a response surface method involving design of experiments and adaptive sampling techniques are applied for characterizing the effects of the design changes.
Technical Paper

Algorithm to Calibrate Catalytic Converter Simulation Light-Off Curve

2024-04-09
2024-01-2630
Spark ignition engines utilize catalytic converters to reform harmful exhaust gas emissions such as carbon monoxide, unburned hydrocarbons, and oxides of nitrogen into less harmful products. Aftertreatment devices require the use of expensive catalytic metals such as platinum, palladium, and rhodium. Meanwhile, tightening automotive emissions regulations globally necessitate the development of high-performance exhaust gas catalysts. So, automotive manufactures must balance maximizing catalyst performance while minimizing production costs. There are thousands of different recipes for catalytic converters, with each having a different effect on the various catalytic chemical reactions which impact the resultant tailpipe gas composition. In the development of catalytic converters, simulation models are often used to reduce the need for physical parts and testing, thus saving significant time and money.
Technical Paper

An Evaluation of Electrical and Thermal Conductivity and Mechanical Behaviors of a Silicon Rubber based Composite Material for PEM Fuel Cell

2009-04-20
2009-01-1005
With increasing demand for cost-effective fuel cells, it is essential to investigate alternative materials for components of the fuel cells. The objective of this paper is to implement elastomeric materials (silicon rubber) for the use of bipolar plates in a polymer electrolyte membrane fuel cell. Two different types of conductive fillers, a graphite fiber and flake, were added at different concentrations to a two-component silicone rubber slurry. Electrical, thermal and mechanical properties of the composite material were investigated. Comparable electrical and thermal conductivities were achieved to that of commercially available plates. The silicone rubber based composite material maintained elastomeric properties for improved sealing of cell fluid reactants and products.
Technical Paper

Analysis of Sheet Metal Joining with Self-Piercing Riveting

2020-04-14
2020-01-0223
Self-piercing riveting (SPR) has been used in production to join sheet materials since the early 1990s. A large amount of experimental trial work was required in order to determine an appropriate combination of rivet and anvil design to fulfill the required joint parameters. The presented study is describing the methodology of SPR joint design based on numerical simulation and experimental methods of defining required simulation input parameters. The required inputs are the stress-strain curves of sheet materials and rivets for the range of strains taking place in the SPR joining process, parameters required for a fracture model for all involved materials, and friction parameters for all interfaces of SPR process. In the current study, the normalized Cockroft-Latham fracture criterion was used for predicting fracture. Custom hole and tube expansion tests were used for predicting fracture of the riveted materials and the rivet, respectively.
Technical Paper

Correlation of Explicit Finite Element Road Load Calculations for Vehicle Durability Simulations

2006-03-01
2006-01-1980
Durability of automotive structures is a primary engineering consideration that is evaluated during a vehicle's design and development. In addition, it is a basic expectation of consumers, who demand ever-increasing levels of quality and dependability. Automakers have developed corporate requirements for vehicle system durability which must be met before a products is delivered to the customer. To provide early predictions of vehicle durability, prior to the construction and testing of prototypes, it is necessary to predict the forces generated in the vehicle structure due to road inputs. This paper describes an application of the “virtual proving ground” approach for vehicle durability load prediction for a vehicle on proving ground road surfaces. Correlation of the results of such a series of simulations will be described, and the modeling and simulation requirements to provide accurate simulations will be presented.
Technical Paper

Cycle-Averaged Heat Flux Measurements in a Straight-Pipe Extension of the Exhaust Port of an SI Engine

2006-04-03
2006-01-1033
This paper presents an experimental study of the cycle-averaged, local surface heat transfer, from the exhaust gases to a straight pipe extension of the exhaust port of a four-cylinder spark-ignition (SI) engine, over a wide range of engine operating conditions, from 1000 rpm, light load, through 4000 rpm, full load. The local steady-state heat flux was well correlated by a Nusselt-Reynolds number relationship that included entrance effects. These effects were found to be the major contributor to the local heat transfer augmentation. The Convective Augmentation Factor (CAF), which is defined as the ratio of the measured heat flux to the corresponding heat flux for fully-developed turbulent pipe flow, was found to decrease with increasing Reynolds number and increasing axial distance from the entrance of the test section.
Technical Paper

Defining the Boundary Conditions of the CFR Engine under MON Conditions, and Evaluating Chemical Kinetic Predictions at RON and MON for PRFs

2021-04-06
2021-01-0469
Expanding upon the authors’ previous work which utilized a GT-Power model of the Cooperative Fuels Research (CFR) engine under Research Octane Number (RON) conditions, this work defines the boundary conditions of the CFR engine under Motored Octane Number (MON) test conditions. The GT-Power model was validated against experimental CFR engine data for primary reference fuel (PRF) blends between 60 and 100 under standard MON conditions, defining the full range of interest of MON for gasoline-type fuels. The CFR engine model utilizes a predictive turbulent flame propagation sub-model, and a chemical kinetic solver for the end-gas chemistry. The validation was performed simultaneously for thermodynamic and chemical kinetic parameters to match in-cylinder pressure conditions, burn rate, and knock point prediction with experimental data, requiring only minor modifications to the flame propagation model from previous model iterations.
Technical Paper

Design Approach for Online Measuring the Distance of the Gap between the Contactors of Electric Relay Switch

2014-04-01
2014-01-0831
The assembling accuracy of two contactors during the relay switch production is an important factor affecting the quality of relay. An embedded machine vision quality Inspection system has been developed for electric relay production line inspection. The proposed system can provide online feedback on the quality of the relays by measuring the distance of the gap between the contacts of them. Two CMOS imaging sensors are operated for image acquisition and the parallel working mode is realized under dual-channel mode. A red light illumination system has been adopted to eliminate the imaging noise from the reflection of the surfaces of copper sheet. Before the test, the features areas in the image of same type relay is selected as template and saved in the computer. During the inspection procedure, a rotation invariance detection scheme based on circular projection matching algorithm has been used for fast recognizing and locating detected object with the help of these feature areas.
Technical Paper

Design and Validation of a GT Power Model of the CFR Engine towards the Development of a Boosted Octane Number

2018-04-03
2018-01-0214
Developments in modern spark ignition (SI) engines such as intake boosting, direct-injection, and engine downsizing techniques have demonstrated improved performance and thermal efficiency, however, these strategies induce significant deviation in end-gas pressure/temperature histories from those of the traditional Research and Motor Octane Number (RON and MON) standards. Attempting to extrapolate the anti-knock performance of fuels tested under the traditional RON/MON conditions to boosted operation has yielded mixed results in both SI and advanced compression ignition (ACI) engines. This consideration motivates the present work with seeks to establish a pathway towards the development of the test conditions of a boosted octane number, which would better correlate to fuel performance at high intake pressure conditions.
Journal Article

Development of Digital Shearography for Dual Sensitivity Simultaneous Measurement Using Carrier Frequency Spatial Phase Shift Technology

2023-04-11
2023-01-0068
Digital shearography has many advantages, such as full-field, non-contact, high sensitivity, and good robustness. It was widely used to measure the deformation and strain of materials, also to the application of nondestructive testing (NDT). However, most digital sherography applications can only work in one field of view per measurement, and some small defects may not be detected as a result. Multiple measurements of different fields of view are needed to solve this issue, which will increase the measurement time and cost. The difficulty in performing multiple measurements may also increase for cases where the loading is not repeatable. Therefore, a system capable of measuring dual fields of view at the same time is necessary. The carrier frequency spatial phase shift method may be a good candidate to reach this goal because it can simultaneously record phase information of multiple images, e.g. two speckle interferograms with different fields of view.
Technical Paper

Development of a Novel Test System to Determine the Durability of RTV Gasket Material

2020-04-14
2020-01-1069
This paper describes a laboratory-based test system and procedure for determining the durability of RTV sealant with fretting movement. A test machine is described in which shear and tensile stress-generating displacements at room temperature and temperature of 100°C are produced to load an RTV seal. The test system utilizes an air pressurized hollow cylinder with a cap sealed by RTV sealant on a reciprocating test rig. An external air leakage monitoring system detects the health of the tested RTV seal. When air leakage occurs, the seal is determined to have failed. RTV sealant used in the test was fully cured at room temperature and then aged with engine oil. In the experiments, a total of 6 displacements were used to generate cycle/amplitude graphs for both shear and tensile modes. Failures were determined to be caused by the loss of adhesion in tensile mode, and by crack nucleation due to the special step design in shear mode.
Technical Paper

Dimension Study of Punched Hole Using Conical Tipped Punches

2016-04-05
2016-01-0364
Dimensional problems for punched holes on a sheet metal stamping part include being undersized and oversized. Some important relationships among tools and products, such as the effect of conical punch tip angle, are not fully understood. To study this effect, sheets of AA6016 aluminum and BH210 steel were punched by punches with different conical tip angles. The test method and test results are presented. The piercing force and withdrawing force when using conical punches were also studied. The results indicate that the oversize issue for a punched hole in a stamped panel is largely due to the combination of the conical tip effect and the stretching-release effect.
Technical Paper

Evaluation of Residual Stresses in Plastics and Composites By Shearography

1999-03-01
1999-01-1254
This paper presents an application of shearography, an optical method for full-field strain measurement, for evaluating residual stresses in plastic/composite components. The approach is based on measuring the change in slope of the component surface, which is caused by the release of residual stresses, in the vicinity of a small, shallow blind-hole or of a small indentation made on the underside of the component during testing. The severity of slope-change, and hence the fringe density, gives a measure of the residual stresses in the component. This method does not require laborious mounting of strain gages or transducers whose stiffness could affect the accuracy of measurements, and is therefore practical for use in both production and field environment.
Technical Paper

Improvements to a CFR Engine Three Pressure Analysis GT-Power Model for HCCI and SI Conditions

2020-01-24
2019-32-0608
While experimental data measured directly on the engine are very valuable, there is a limitation of what measurements can be made without modifying the engine or the process that is being investigated, such as cylinder temperature. In order to supplement the experimental results, a Three Pressure Analysis (TPA) GT-Power model of the Cooperative Fuel Research (CFR) engine was previously developed and validated for estimating cylinder temperature and residual fraction. However, this model had only been validated for normal and knocking spark ignition (SI) combustion with RON-like intake conditions (naturally aspirated, <52 °C). This work presents improvements made to the GT-Power model and the expansion of its use for HCCI combustion. The burn rate estimation sub-model was modified to allow for low temperature heat release estimation and compression ignition operation.
Technical Paper

Investigation of the Effects of Autoignition on the Heat Release Histories of a Knocking SI Engine Using Wiebe Functions

2008-04-14
2008-01-1088
In this paper, we develop a methodology to enable the isolation of the heat release contribution of knocking combustion from flame-propagation combustion. We first address the empirical modeling of individual non-autoigniting combustion history using the Wiebe function, and subsequently apply this methodology to investigate the effect of autoignition on the heat release history of knocking cycles in a spark ignition (SI) engine. We start by re-visiting the Wiebe function, which is widely used to model empirically mass burned histories in SI engines. We propose a method to tune the parameters of the Wiebe function on a cycle-by-cycle basis, i.e., generating a different Wiebe to suitably fit the heat release history of each cycle. Using non-autoigniting cycles, we show that the Wiebe function can reliably simulate the heat release history of an entire cycle, if only data from the first portion of the cycle is used in the tuning process.
Technical Paper

Low-Cost Open-Source Data Acquisition for High-Speed Cylinder Pressure Measurement with Arduino

2024-04-09
2024-01-2390
In-cylinder pressure measurement is an important tool in internal combustion engine research and development for combustion, cycle performance, and knock analysis in spark-ignition engines. In a typical laboratory setup, a sub crank angle resolved (typically between 0.1o and 0.5o) optical encoder is installed on the engine crankshaft, and a piezoelectric pressure transducer is installed in the engine cylinder. The charge signal produced by the transducer due to changes in cylinder pressure during the engine cycle is converted to voltage by a charge amplifier, and this analog voltage is read by a high-speed data acquisition (DAQ) system at each encoder trigger pulse. The high speed of engine operation and the need to collect hundreds of engine cycles for appropriate cycle-averaging requires significant processor speed and memory, making typical data acquisition systems very expensive.
X