Refine Your Search

Topic

Author

Search Results

Technical Paper

A Computational Study on the Critical Ignition Energy and Chemical Kinetic Feature for Li-Ion Battery Thermal Runaway

2018-04-03
2018-01-0437
Lithium-ion (Li-ion) batteries and issues related to their thermal management and safety have been attracting extensive research interests. In this work, based on a recent thermal chemistry model, the phenomena of thermal runaway induced by a transient internal heat source are computationally investigated using a three-dimensional (3D) model built in COMSOL Multiphysics 5.3. Incorporating the anisotropic heat conductivity and typical thermal chemical parameters available from literature, temperature evolution subject to both heat transfer from an internal source and the activated internal chemical reactions is simulated in detail. This paper focuses on the critical runaway behavior with a delay time around 10s. Parametric studies are conducted to identify the effects of the heat source intensity, duration, geometry, as well as their critical values required to trigger thermal runaway.
Journal Article

A Decision Based Mobility Model for Semi and Fully Autonomous Vehicles

2020-04-14
2020-01-0747
With the emergence of intelligent ground vehicles, an objective evaluation of vehicle mobility has become an even more challenging task. Vehicle mobility refers to the ability of a ground vehicle to traverse from one point to another, preferably in an optimal way. Numerous techniques exist for evaluating the mobility of vehicles on paved roads, both quantitatively and qualitatively, however, capabilities to evaluate their off-road performance remains limited. Whereas a vehicle’s off-road mobility may be significantly enhanced with intelligence, it also introduces many new variables into the decision making process that must be considered. In this paper, we present a decision analytic framework to accomplish this task. In our approach, a vehicle’s mobility is modeled using an operator’s preferences over multiple mobility attributes of concern. We also provide a method to analyze various operating scenarios including the ability to mitigate uncertainty in the vehicles inputs.
Technical Paper

A Framework for Vision-Based Lane Line Detection in Adverse Weather Conditions Using Vehicle-to-Infrastructure (V2I) Communication

2019-04-02
2019-01-0684
Lane line detection is a very critical element for Advanced Driver Assistance Systems (ADAS). Although, there has been significant amount of research dedicated to the detection and localization of lane lines in the past decade, there is still a gap in the robustness of the implemented systems. A major challenge to the existing lane line detection algorithms stems from coping with bad weather conditions (e.g. rain, snow, fog, haze, etc.). Snow offers an especially challenging environment, where lane marks and road boundaries are completely covered by snow. In these scenarios, on-board sensors such as cameras, LiDAR, and radars are of very limited benefit. In this research, the focus is on solving the problem of improving robustness of lane line detection in adverse weather conditions, especially snow. A framework is proposed that relies on using Vehicle-to-Infrastructure (V2I) communication to access reference images stored in the cloud.
Technical Paper

A Fresh Perspective on Hypoid Duty Cycle Severity

2021-04-06
2021-01-0707
A new method is demonstrated for rating the “severity” of a hypoid gear set duty cycle (revolutions at torque) using the intercept of T-N curve to support gearset selection and sizing decision across vehicle programs. Historically, it has been customary to compute a cumulative damage (using Miner's Rule) for a rotating component duty cycle given a T-N curve slope and intercept for the component and failure mode of interest. The slope and intercept of a T-N curve is often proprietary to the axle manufacturer and are not published. Therefore, for upfront sizing and selection purposes representative T-N properties are used to assess relative component duty cycle severity via cumulative damage (non-dimensional quantity). A similar duty cycle severity rating can also be achieved by computing the intercept of the T-N curve instead of cumulative damage, which is the focus of this study.
Technical Paper

A New Calibration Method for Digital 3D Profilometry System

2007-04-16
2007-01-1380
Recently the use of digital 3D profilometry in the automotive industries has become increasingly popular. The effective techniques for 3D shape measurement, especially for the measurement of complicated structures, have become more and more significant. Different optical inspective methods, such as 3D profilometry, laser scanning and Coordinate-Measuring Machine (CMM), have been applied for 3D shape measurement. Among these methods, 3D profilometry seems to be the fastest and inexpensive method with considerably accurate result, and it has simple setup and full field measuring ability compared with other techniques. In this paper, a novel calibration method for 3D-profilometry will be introduced. In this method, a multiple-step calibration procedure is utilized and best-fit calibration curves are obtained to improve measurement accuracy. A recursive algorithm is used for data evaluation, along with calibration data.
Technical Paper

A Two-Layer Soot Model for Hydrocarbon Fuel Combustion

2020-04-14
2020-01-0243
Experimental studies of soot particles showed that the intensity ratio of amorphous and graphite layers measured by Raman spectroscopy correlates to soot oxidation reactivities, which is very important for regeneration of the diesel particulate filters and gasoline particulate filters. This physical mechanism is absent in all soot models. In the present paper, a novel two-layer soot model was proposed that considers the amorphous and graphite layers in the soot particles. The soot model considers soot inception, soot surface growth, soot oxidation by O2 and OH, and soot coagulation. It is assumed that amorphous-type soot forms from fullerene. No soot coagulation is considered in the model between the amorphous- and graphitic-types of soot. Benzene is taken as the soot precursor, which is formed from acetylene. The model was implemented into a commercial CFD software CONVERGE using user defined functions. A diesel engine case was simulated.
Journal Article

Accelerating In-Vehicle Network Intrusion Detection System Using Binarized Neural Network

2022-03-29
2022-01-0156
Controller Area Network (CAN), the de facto standard for in-vehicle networks, has insufficient security features and thus is inherently vulnerable to various attacks. To protect CAN bus from attacks, intrusion detection systems (IDSs) based on advanced deep learning methods, such as Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), have been proposed to detect intrusions. However, those models generally introduce high latency, require considerable memory space, and often result in high energy consumption. To accelerate intrusion detection and also reduce memory requests, we exploit the use of Binarized Neural Network (BNN) and hardware-based acceleration for intrusion detection in in-vehicle networks. As BNN uses binary values for activations and weights rather than full precision values, it usually results in faster computation, smaller memory cost, and lower energy consumption than full precision models.
Technical Paper

An Application of Ant Colony Optimization to Energy Efficient Routing for Electric Vehicles

2013-04-08
2013-01-0337
With the increased market share of electric vehicles, the demand for energy-efficient routing algorithms specifically optimized for electric vehicles has increased. Traditional routing algorithms are focused on optimizing the shortest distance or the shortest time in finding a path from point A to point B. These traditional methods have been working well for fossil fueled vehicles. Electric vehicles, on the other hand, require different route optimization techniques. Negative edge costs, battery power limits, battery capacity limits, and vehicle parameters that are only available at query time, make the task of electric vehicle routing a challenging problem. In this paper, we present an ant colony based, energy-efficient routing algorithm that is optimized and designed for electric vehicles. Simulation results show improvements in the energy consumption of electric vehicles when applied to a start-to-destination routing problem.
Journal Article

An Experimental Survey of Li-Ion Battery Charging Methods

2016-05-01
2015-01-9145
Lithium-Ion batteries are the standard portable power solution to many consumers and industrial applications. These batteries are commonly used in laptop computers, heavy duty devices, unmanned vehicles, electric and hybrid vehicles, cell phones, and many other applications. Charging these batteries is a delicate process because it depends on numerous factors such as temperature, cell capacity, and, most importantly, the power and energy limits of the battery cells. Charging capacity, charging time and battery pack temperature variations are highly dependent on the charging method used. These three factors can be of special importance in applications with strict charging time requirements or with limited thermal management capabilities. In this paper, three common charging methods are experimentally studied and analyzed. Constant-current constant-voltage, the time pulsed charging method, and the multistage constant current charging methods were considered.
Technical Paper

Analyzing the Impact of Electric Vehicles Charging Stations on Power Quality in Power Distribution Systems

2021-04-06
2021-01-0199
Integration of electric vehicles (EV) in power distribution systems reduces emissions that contribute to climate changes and improves public health by reducing ecological damage. Even though EVs significantly impact reducing carbon emissions and less dependency on hydrocarbon-based generators, they could negatively impact power systems, especially power quality. This paper analyzes electric vehicle charging stations’ impact on power quality concerning the voltage and current analysis of the harmonic distortion. As a case study, a sample system has been chosen, and a charging station is integrated into the system to investigate the harmonic impacts on the system. Finally, various mitigation techniques to eliminate the harmonics and minimize EVs’ adverse impacts on power quality in power distribution systems have been discussed.
Technical Paper

Application of Casting to Automotive ECU’s

2021-04-06
2021-01-0131
Casting is the ability to let users transfer their favorite videos, music, movies, etc. from their phone to a chosen display. This functionality has become very popular these days, and to the user, it is as simple as clicking a button. This “simple” task is a complex system that requires various independent sources to communicate efficiently and effectively to produce a robust and reliable output. The sending and receiving devices are required to be on the same network - which involves reliable and secure connection. This allows the sending of the URL of the chosen feature to the server provider, which will then connect to the receiver embedded electronics where the authentication process that protects Digital Rights Management (DRM) is established. In the era of developing autonomous and luxury vehicles, this technology has the potential to add a new dimension of in-vehicle entertainment that could come very close to the home experience.
Technical Paper

Austempering Process for Carburized Low Alloy Steels

2013-04-08
2013-01-0949
There is a continual need to apply heat treatment processes in innovative ways to optimize material performance. One such application studied in this research is carburizing followed by austempering of low carbon alloy steels, AISI 8620, AISI 8822 and AISI 4320, to produce components with high strength and toughness. This heat treatment process was applied in two steps; first, carburization of the surface of the parts, second, the samples were quenched from austenitic temperature at a rate fast enough to avoid the formation of ferrite or pearlite and then held at a temperature just above the martensite starting temperature to partially or fully form bainite. Any austenite which was not transformed during austempering, upon further cooling formed martensite or was present as retained austenite.
Technical Paper

Bendability Study of 7xxx Aluminum Alloy Based on the DIC Technique

2019-04-02
2019-01-1265
Bendability is a critical characteristic of sheet metal during the stamping process in automobile industry. Bending operation plays an important role in the panels forming of vehicles. In this study, the recently developed “Incremental Bending” method was utilized to evaluate the ambient bendability of 7xxx series avoiding bending crack. A 3D digital image correlation (DIC) measurement system is improved to capture the displacement and strain information on the stretched side of the sheet samples. The background, experimental method and data post-procedure are introduced in detail. After several sequential images acquisition and data processing, the major strain histories on the stretch zone of the samples are measured. With different bending process and parameters, the location of peak strain and the surface major strain distribution were evaluated as a function of R/T ratio (the inner radius over sheet thickness).
Technical Paper

CAN Crypto FPGA Chip to Secure Data Transmitted Through CAN FD Bus Using AES-128 and SHA-1 Algorithms with A Symmetric Key

2017-03-28
2017-01-1612
Robert Bosch GmBH proposed in 2012 a new version of communication protocol named as Controller area network with Flexible Data-Rate (CANFD), that supports data frames up to 64 bytes compared to 8 bytes of CAN. With limited data frame size of CAN message, and it is impossible to be encrypted and secured. With this new feature of CAN FD, we propose a hardware design - CAN crypto FPGA chip to secure data transmitted through CAN FD bus by using AES-128 and SHA-1 algorithms with a symmetric key. AES-128 algorithm will provide confidentiality of CAN message and SHA-1 algorithm with a symmetric key (HMAC) will provide integrity and authentication of CAN message. The design has been modeled and verified by using Verilog HDL – a hardware description language, and implemented successfully into Xilinx FPGA chip by using simulation tool ISE (Xilinx).
Technical Paper

Charge Capacity Versus Charge Time in CC-CV and Pulse Charging of Li-Ion Batteries

2013-04-08
2013-01-1546
Due to their high energy density and low self-discharge rates, lithium-ion batteries are becoming the favored solution for portable electronic devices and electric vehicles. Lithium-Ion batteries require special charging methods that must conform to the battery cells' power limits. Many different charging methods are currently used, some of these methods yield shorter charging times while others yield more charge capacity. This paper compares the constant-current constant-voltage charging method against the time pulsed charging method. Charge capacity, charge time, and cell temperature variations are contrasted. The results allow designers to choose between these two methods and select their parameters to meet the charging needs of various applications.
Technical Paper

Computation of Safety Architecture for Electric Power Steering System and Compliance with ISO 26262

2020-04-14
2020-01-0649
Technological advancement in the automotive industry necessities a closer focus on the functional safety for higher automated driving levels. The automotive industry is transforming from conventional driving technology, where the driver or the human is a part of the control loop, to fully autonomous development and self-driving mode. The Society of Automotive Engineers (SAE) defines the level 4 of autonomy: “Automated driving feature will not require the driver to take over driving control.” Thus, more and more safety related electronic control units (ECUs) are deployed in the control module to support the vehicle. As a result, more complexity of system architecture, software, and hardware are interacting and interfacing in the control system, which increases the risk of both systematic and random hardware failures.
Journal Article

Consequences of Deep Cycling 24 Volt Battery Strings

2015-07-01
2015-01-9142
Deep charge and discharge cycling of 24 Volt battery strings composed of two 12 Volt VRLA batteries wired in series affects reliability and life expectancy. This is a matter of interest in vehicle power source applications. These cycles include those specific operational cases requiring the delivery of the full storage capacity during discharge. The concern here is related to applications where batteries serve as a primary power source and the energy content is an issue. It is a common practice for deep cycling a 24 volt battery string to simply add the specified limit voltages during charge and discharge for the individual 12 Volt batteries. In reality, the 12 Volt batteries have an inherent capacity variability and are not identical in their performance characteristics. The actual voltages of the individual 12 Volt batteries are not identical.
Technical Paper

Correlation of Explicit Finite Element Road Load Calculations for Vehicle Durability Simulations

2006-03-01
2006-01-1980
Durability of automotive structures is a primary engineering consideration that is evaluated during a vehicle's design and development. In addition, it is a basic expectation of consumers, who demand ever-increasing levels of quality and dependability. Automakers have developed corporate requirements for vehicle system durability which must be met before a products is delivered to the customer. To provide early predictions of vehicle durability, prior to the construction and testing of prototypes, it is necessary to predict the forces generated in the vehicle structure due to road inputs. This paper describes an application of the “virtual proving ground” approach for vehicle durability load prediction for a vehicle on proving ground road surfaces. Correlation of the results of such a series of simulations will be described, and the modeling and simulation requirements to provide accurate simulations will be presented.
Technical Paper

Defining the Boundary Conditions of the CFR Engine under MON Conditions, and Evaluating Chemical Kinetic Predictions at RON and MON for PRFs

2021-04-06
2021-01-0469
Expanding upon the authors’ previous work which utilized a GT-Power model of the Cooperative Fuels Research (CFR) engine under Research Octane Number (RON) conditions, this work defines the boundary conditions of the CFR engine under Motored Octane Number (MON) test conditions. The GT-Power model was validated against experimental CFR engine data for primary reference fuel (PRF) blends between 60 and 100 under standard MON conditions, defining the full range of interest of MON for gasoline-type fuels. The CFR engine model utilizes a predictive turbulent flame propagation sub-model, and a chemical kinetic solver for the end-gas chemistry. The validation was performed simultaneously for thermodynamic and chemical kinetic parameters to match in-cylinder pressure conditions, burn rate, and knock point prediction with experimental data, requiring only minor modifications to the flame propagation model from previous model iterations.
Technical Paper

Design Approach for Online Measuring the Distance of the Gap between the Contactors of Electric Relay Switch

2014-04-01
2014-01-0831
The assembling accuracy of two contactors during the relay switch production is an important factor affecting the quality of relay. An embedded machine vision quality Inspection system has been developed for electric relay production line inspection. The proposed system can provide online feedback on the quality of the relays by measuring the distance of the gap between the contacts of them. Two CMOS imaging sensors are operated for image acquisition and the parallel working mode is realized under dual-channel mode. A red light illumination system has been adopted to eliminate the imaging noise from the reflection of the surfaces of copper sheet. Before the test, the features areas in the image of same type relay is selected as template and saved in the computer. During the inspection procedure, a rotation invariance detection scheme based on circular projection matching algorithm has been used for fast recognizing and locating detected object with the help of these feature areas.
X