Refine Your Search

Topic

Author

Search Results

Technical Paper

A Physics-Based, Control-Oriented Turbocharger Compressor Model for the Prediction of Pressure Ratio at the Limit of Stable Operations

2019-04-02
2019-01-0320
Downsizing and boosting is currently the principal solution to reduce fuel consumption in automotive engines without penalizing the power output. A key challenge for controlling the boost pressure during highly transient operations lies in avoiding to operate the turbocharger compressor in its instability region, also known as surge. While this phenomenon is well known by control engineers, it is still difficult to accurately predict during transient operations. For this reason, the scientific community has directed considerable efforts to understand the phenomena leading to the onset of unstable behavior, principally through experimental investigations or high-fidelity CFD simulations. On the other hand, less emphasis has been placed on creating control-oriented models that adopt a physics-based (rather than data-driven) approach to predict the onset of instability phenomena.
Technical Paper

A Safety and Security Testbed for Assured Autonomy in Vehicles

2020-04-14
2020-01-1291
Connectivity and autonomy in vehicles promise improved efficiency, safety and comfort. The increasing use of embedded systems and the cyber element bring with them many challenges regarding cyberattacks which can seriously compromise driver and passenger safety. Beyond penetration testing, assessment of the security vulnerabilities of a component must be done through the design phase of its life cycle. This paper describes the development of a benchtop testbed which allows for the assurance of safety and security of components with all capabilities from Model-in-loop to Software-in-loop to Hardware-in-loop testing. Environment simulation is obtained using the AV simulator, CARLA which provides realistic scenarios and sensor information such as Radar, Lidar etc. MATLAB runs the vehicle, powertrain and control models of the vehicle allowing for the implementation and testing of customized models and algorithms.
Technical Paper

An Approach to Model a Traffic Environment by Addressing Sparsity in Vehicle Count Data

2023-04-11
2023-01-0854
For realistic traffic modeling, real-world traffic calibration data is needed. These data include a representative road network, road users count by type, traffic lights information, infrastructure, etc. In most cases, this data is not readily available due to cost, time, and confidentiality constraints. Some open-source data are accessible and provide this information for specific geographical locations, however, it is often insufficient for realistic calibration. Moreover, the publicly available data may have errors, for example, the Open Street Maps (OSM) does not always correlate with physical roads. The scarcity, incompleteness, and inaccuracies of the data pose challenges to the realistic calibration of traffic models. Hence, in this study, we propose an approach based on spatial interpolation for addressing sparsity in vehicle count data that can augment existing data to make traffic model calibrations more accurate.
Journal Article

Analysis and Mathematical Modeling of Car-Following Behavior of Automated Vehicles for Safety Evaluation

2019-04-02
2019-01-0142
With the emergence of Driving Automation Systems (SAE levels 1-5), the necessity arises for methods of evaluating these systems. However, these systems are much more challenging to evaluate than traditional safety features (SAE level 0). This is because an understanding of the Driving Automation system’s response in all possible scenarios is desired, but prohibitive to comprehensively test. Hence, this paper attempts to evaluate one such system, by modeling its behavior. The model generated parameters not only allow for objective comparison between vehicles, but also provide a more complete understanding of the system. The model can also be used to extrapolate results by simulating other scenarios without the need for conducting more tests. In this paper, low speed automated driving (also known as Traffic Jam Assist (TJA)) is studied. This study focused on the longitudinal behavior of automated vehicles while following a lead vehicle (LV) in traffic jam scenarios.
Technical Paper

Application of Adversarial Networks for 3D Structural Topology Optimization

2019-04-02
2019-01-0829
Topology optimization is a branch of structural optimization which solves an optimal material distribution problem. The resulting structural topology, for a given set of boundary conditions and constraints, has an optimal performance (e.g. minimum compliance). Conventional 3D topology optimization algorithms achieve quality optimized results; however, it is an extremely computationally intensive task which is, in general, impractical and computationally unachievable for real-world structural optimal design processes. Therefore, the current development of rapid topology optimization technology is experiencing a major drawback. To address the issues, a new approach is presented to utilize the powerful abilities of large deep learning models to replicate this design process for 3D structures. Adversarial models, primarily Wasserstein Generative Adversarial Networks (WGAN), are constructed which consist of 2 deep convolutional neural networks (CNN) namely, a discriminator and a generator.
Technical Paper

Assessment of Driving Simulators for Use in Longitudinal Vehicle Dynamics Evaluation

2022-03-29
2022-01-0533
In the last decade, the use of Driver-in-the-Loop (DiL) simulators has significantly increased in research, product development, and motorsports. To be used as a verification tool in research, simulators must show a level of correlation with real-world driving for the chosen use case. This study aims to assess the validity of a low-cost, limited travel Vehicle Dynamics Driver-in-Loop (VDDiL) simulator by comparing on-road and simulated driving data using a statistical evaluation of longitudinal and lateral metrics. The process determines if the simulator is appropriate for verifying control strategies and optimization algorithms for longitudinal vehicle dynamics and evaluates consistency in the chosen metrics. A validation process explaining the experiments, choice of metrics, and analysis tools used to perform a validation study from the perspective of the longitudinal vehicle model is shown in this study.
Technical Paper

Cooperative Collision Avoidance in a Connected Vehicle Environment

2019-04-02
2019-01-0488
Connected vehicle (CV) technology is among the most heavily researched areas in both the academia and industry. The vehicle to vehicle (V2V), vehicle to infrastructure (V2I) and vehicle to pedestrian (V2P) communication capabilities enable critical situational awareness. In some cases, these vehicle communication safety capabilities can overcome the shortcomings of other sensor safety capabilities because of external conditions such as 'No Line of Sight' (NLOS) or very harsh weather conditions. Connected vehicles will help cities and states reduce traffic congestion, improve fuel efficiency and improve the safety of the vehicles and pedestrians. On the road, cars will be able to communicate with one another, automatically transmitting data such as speed, position, and direction, and send alerts to each other if a crash seems imminent. The main focus of this paper is the implementation of Cooperative Collision Avoidance (CCA) for connected vehicles.
Journal Article

Crash Factor Analysis in Intersection-Related Crashes Using SHRP 2 Naturalistic Driving Study Data

2021-04-06
2021-01-0872
Intersections have a high risk of vehicle-to-vehicle conflicts because of the overlapping traffic flow from multiple roads. To understand the factors contributing to the crashes, this study examines the common characteristics in intersection-related crash and near- crash events, such as the existence of traffic control devices, the driver at fault, and occurrence of visual obstructions. The descriptive data of the crash and near-crash events recorded in the Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS) database is used in categorization and statistical analysis in this study. First, the events are divided into seven categories based on trajectories of the conflicting vehicles. The categorization provides the basis for in-depth analysis of crash-contributing factors in specific confliction patterns. Subsequently, descriptive statistics are used to portray each of the categories.
Technical Paper

Data Association between Perception and V2V Communication Sensors

2023-04-11
2023-01-0856
The connectivity between vehicles, infrastructure, and other traffic participants brings a new dimension to automotive safety applications. Soon all the newly produced cars will have Vehicle to Everything (V2X) communication modems alongside the existing Advanced Driver Assistant Systems (ADAS). It is essential to identify the different sensor measurements for the same targets (Data Association) to use connectivity reliably as a safety feature alongside the standard ADAS functionality. Considering the camera is the most common sensor available for ADAS systems, in this paper, we present an experimental implementation of a Mahalanobis distance-based data association algorithm between the camera and the Vehicle to Vehicle (V2V) communication sensors. The implemented algorithm has low computational complexity and the capability of running in real-time. One can use the presented algorithm for sensor fusion algorithms or higher-level decision-making applications in ADAS modules.
Journal Article

Design of a Parallel-Series PHEV for the EcoCAR 2 Competition

2012-09-10
2012-01-1762
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 75 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the rigorous design process followed by the Ohio State team during Year 1 of the competition. The design process includes identifying the team customer's needs and wants, selecting an overall vehicle architecture and completing detailed design work on the mechanical, electrical and control systems. This effort was made possible through support from the U.S.
Journal Article

Development of Refined Clutch-Damper Subsystem Dynamic Models Suitable for Time Domain Studies

2015-06-15
2015-01-2180
This study examines clutch-damper subsystem dynamics under transient excitation and validates predictions using a new laboratory experiment (which is the subject of a companion paper). The proposed models include multi-staged stiffness and hysteresis elements as well as spline nonlinearities. Several example cases such as two high (or low) hysteresis clutches in series with a pre-damper are considered. First, detailed multi-degree of freedom nonlinear models are constructed, and their time domain predictions are validated by analogous measurements. Second, key damping sources that affect transient events are identified and appropriate models or parameters are selected or justified. Finally, torque impulses are evaluated using metrics, and their effects on driveline dynamics are quantified. Dynamic interactions between clutch-damper and spline backlash nonlinearities are briefly discussed.
Technical Paper

Development of Virtual Fuel Economy Trend Evaluation Process

2019-04-02
2019-01-0510
With the advancement of the autonomous vehicle development, the different possibilities of improving fuel economy have increased significantly by changing the driver or powertrain response under different traffic conditions. Development of new fuel-efficient driving strategies requires extensive experiments and simulations in traffic. In this paper, a fuel efficiency simulator environment with existing simulator software such as Simulink, Vissim, Sumo, and CarSim is developed in order to reduce the overall effort required for developing new fuel-efficient algorithms. The simulation environment is created by combining a mid-sized sedan MATLAB-Simulink powertrain model with a realistic microscopic traffic simulation program. To simulate the traffic realistically, real roads from urban and highway sections are modeled in the simulator with different traffic densities.
Technical Paper

Development of the Design of a Plug-In Hybrid-Electric Vehicle for the EcoCAR 3 Competition

2016-04-05
2016-01-1257
The design of a performance hybrid electric vehicle includes a wide range of architecture possibilities. A large part of the design process is identifying reasonable vehicle architectures and vehicle performance capabilities. The Ohio State University EcoCAR 3 team designed a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of reducing the environmental impact of the vehicle, the Ohio State Camaro has been designed with a 44-mile all-electric range. It also features an 18.9 kWh Li-ion energy storage system, a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85) fuel, a 5-speed automated manual transmission, and a 150 kW peak electric machine. This report details the design and modeling process followed by the Ohio State team during Year 1 of the competition. The process included researching the customer needs of the vehicle, determining team design goals, initial modeling, and selecting a vehicle architecture.
Journal Article

Driver’s Response Prediction Using Naturalistic Data Set

2019-04-02
2019-01-0128
Evaluating the safety of Autonomous Vehicles (AV) is a challenging problem, especially in traffic conditions involving dynamic interactions. A thorough evaluation of the vehicle’s decisions at all possible critical scenarios is necessary for estimating and validating its safety. However, predicting the response of the vehicle to dynamic traffic conditions can be the first step in the complex problem of understanding vehicle’s behavior. This predicted response of the vehicle can be used in validating vehicle’s safety. In this paper, models based on Machine Learning were explored for predicting and classifying driver’s response. The Naturalistic Driving Study dataset (NDS), which is part of the Strategic Highway Research Program-2 (SHRP2) was used for training and validating these Machine Learning models.
Technical Paper

Dynamic Speed Harmonization (DSH) as Part of an Intelligent Transportation System (ITS)

2023-04-11
2023-01-0718
In the last decade, the accelerated advancements in manufacturing techniques and material science enabled the automotive industry to manufacture commercial vehicles at more affordable rates. This, however, brought about roadways having to accommodate an ever-increasing number of vehicles every day. However, some roadways, during specific hours of the day, had already been on the brink of reaching their capacity to withstand the number of vehicles travelling on them. Hence, overcrowded roadways create slow traffic, and sometimes, bottlenecks. In this paper, a Dynamic Speed Harmonization (DSH) algorithm that regulates the speed of a vehicle to prevent it from being affected by bottlenecks has been presented. First, co-simulations were run between MATLAB Simulink and CarSim to test different deceleration profiles.
Technical Paper

Effect of Traffic, Road and Weather Information on PHEV Energy Management

2011-09-11
2011-24-0162
Energy management plays a key role in achieving higher fuel economy for plug-in hybrid electric vehicle (PHEV) technology; the state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining the fuel consumed. The energy management algorithm should be designed to meet all driving scenarios while achieving the best possible fuel economy. The knowledge of the power requirement during a driving trip is necessary to achieve the best fuel economy results; performance of the energy management algorithm is closely related to the amount of information available in the form of road grade, velocity profiles, trip distance, weather characteristics and other exogenous factors. Intelligent transportation systems (ITS) allow vehicles to communicate with one another and the infrastructure to collect data about surrounding, and forecast the expected events, e.g., traffic condition, turns, road grade, and weather forecast.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Journal Article

Ensuring Fuel Economy Performance of Commercial Vehicle Fleets Using Blockchain Technology

2019-04-02
2019-01-1078
In the past, research on blockchain technology has addressed security and privacy concerns within intelligent transportation systems for critical V2I and V2V communications that form the backbone of Internet of Vehicles. Within trucking industry, a recent trend has been observed towards the use of blockchain technology for operations. Industry stakeholders are particularly looking forward to refining status quo contract management and vehicle maintenance processes through blockchains. However, the use of blockchain technology for enhancing vehicle performance in fleets, especially while considering the fact that modern-day intelligent vehicles are prone to cyber security threats, is an area that has attracted less attention. In this paper, we demonstrate a case study that makes use of blockchains to securely optimize the fuel economy of fleets that do package pickup and delivery (P&D) in urban areas.
Technical Paper

Estimation of Wet Clutch Friction Parameters in Automotive Transmissions

2015-04-14
2015-01-1146
In this paper, a new algorithm for the off-line estimation of wet clutch friction parameters is proposed for automotive transmissions, motivated by the usefulness of such an algorithm for diagnosing the condition of the clutch and transmission fluid in service. We assume that clutch pressure is measured, which is the case in dual clutch transmissions (DCT). The estimation algorithm uses measured rotational speeds and estimated accelerations at the input and output sides of a clutch, measured clutch pressures, and a simplified dynamic model of clutch friction to estimate the viscous and contact components of clutch friction torque. Coefficient of friction data is generated using the contact friction torque. A Stribeck friction model is fit to the data, and parameters in the model are then calculated by applying linear least squares estimation.
Journal Article

Fast Simulation of Wave Action in Engine Air Path Systems Using Model Order Reduction

2016-04-05
2016-01-0572
Engine downsizing, boosting, direct injection and variable valve actuation, have become industry standards for reducing CO2 emissions in current production vehicles. Because of the increasing complexity of the engine air path system and the high number of degrees of freedom for engine charge management, the design of air path control algorithms has become a difficult and time consuming process. One possibility to reduce the control development time is offered by Software-in-the-Loop (SIL) or Hardware-in-the-Loop (HIL) simulation methods. However, it is significantly challenging to identify engine air path system simulation models that offer the right balance between fidelity, mathematical complexity and computational burden for SIL or HIL implementation.
X