Refine Your Search

Topic

Search Results

Technical Paper

Analysis and Mathematical Modeling of Car-Following Behavior of Automated Vehicles for Safety Evaluation

2019-04-02
2019-01-0142
With the emergence of Driving Automation Systems (SAE levels 1-5), the necessity arises for methods of evaluating these systems. However, these systems are much more challenging to evaluate than traditional safety features (SAE level 0). This is because an understanding of the Driving Automation system’s response in all possible scenarios is desired, but prohibitive to comprehensively test. Hence, this paper attempts to evaluate one such system, by modeling its behavior. The model generated parameters not only allow for objective comparison between vehicles, but also provide a more complete understanding of the system. The model can also be used to extrapolate results by simulating other scenarios without the need for conducting more tests. In this paper, low speed automated driving (also known as Traffic Jam Assist (TJA)) is studied. This study focused on the longitudinal behavior of automated vehicles while following a lead vehicle (LV) in traffic jam scenarios.
Technical Paper

Application of Adversarial Networks for 3D Structural Topology Optimization

2019-04-02
2019-01-0829
Topology optimization is a branch of structural optimization which solves an optimal material distribution problem. The resulting structural topology, for a given set of boundary conditions and constraints, has an optimal performance (e.g. minimum compliance). Conventional 3D topology optimization algorithms achieve quality optimized results; however, it is an extremely computationally intensive task which is, in general, impractical and computationally unachievable for real-world structural optimal design processes. Therefore, the current development of rapid topology optimization technology is experiencing a major drawback. To address the issues, a new approach is presented to utilize the powerful abilities of large deep learning models to replicate this design process for 3D structures. Adversarial models, primarily Wasserstein Generative Adversarial Networks (WGAN), are constructed which consist of 2 deep convolutional neural networks (CNN) namely, a discriminator and a generator.
Technical Paper

Cooperative Collision Avoidance in a Connected Vehicle Environment

2019-04-02
2019-01-0488
Connected vehicle (CV) technology is among the most heavily researched areas in both the academia and industry. The vehicle to vehicle (V2V), vehicle to infrastructure (V2I) and vehicle to pedestrian (V2P) communication capabilities enable critical situational awareness. In some cases, these vehicle communication safety capabilities can overcome the shortcomings of other sensor safety capabilities because of external conditions such as 'No Line of Sight' (NLOS) or very harsh weather conditions. Connected vehicles will help cities and states reduce traffic congestion, improve fuel efficiency and improve the safety of the vehicles and pedestrians. On the road, cars will be able to communicate with one another, automatically transmitting data such as speed, position, and direction, and send alerts to each other if a crash seems imminent. The main focus of this paper is the implementation of Cooperative Collision Avoidance (CCA) for connected vehicles.
Technical Paper

Design of a Grid-Friendly DC Fast Charge Station with Second Life Batteries

2019-04-02
2019-01-0867
DC-fast charge (DCFC) may be amenable for widespread EV adoption. However, there are potential challenges associated with implementation and operation of the DCFC infrastructures. The integration of energy storage systems can limit the scale of grid installation required for DCFC and enable more efficient grid energy usage. In addition, second-life batteries (SLBs) can find application in DCFC, significantly reducing installation cost when compared to solutions based on new battery packs. However, both system architecture and control strategy require optimization to ensure an optimal use of SLBs, including degradation and thermal aspects. This study proposes an application of automotive SLBs for DCFC stations where high power grid connection is not available or feasible. Several SLBs are connected to the grid by means of low power chargers (e.g. L2 charging station), and a DC/DC converter controls the power to the EV power dispenser.
Journal Article

Design of a Parallel-Series PHEV for the EcoCAR 2 Competition

2012-09-10
2012-01-1762
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 75 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the rigorous design process followed by the Ohio State team during Year 1 of the competition. The design process includes identifying the team customer's needs and wants, selecting an overall vehicle architecture and completing detailed design work on the mechanical, electrical and control systems. This effort was made possible through support from the U.S.
Technical Paper

Development of Virtual Fuel Economy Trend Evaluation Process

2019-04-02
2019-01-0510
With the advancement of the autonomous vehicle development, the different possibilities of improving fuel economy have increased significantly by changing the driver or powertrain response under different traffic conditions. Development of new fuel-efficient driving strategies requires extensive experiments and simulations in traffic. In this paper, a fuel efficiency simulator environment with existing simulator software such as Simulink, Vissim, Sumo, and CarSim is developed in order to reduce the overall effort required for developing new fuel-efficient algorithms. The simulation environment is created by combining a mid-sized sedan MATLAB-Simulink powertrain model with a realistic microscopic traffic simulation program. To simulate the traffic realistically, real roads from urban and highway sections are modeled in the simulator with different traffic densities.
Technical Paper

Development of the Design of a Plug-In Hybrid-Electric Vehicle for the EcoCAR 3 Competition

2016-04-05
2016-01-1257
The design of a performance hybrid electric vehicle includes a wide range of architecture possibilities. A large part of the design process is identifying reasonable vehicle architectures and vehicle performance capabilities. The Ohio State University EcoCAR 3 team designed a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of reducing the environmental impact of the vehicle, the Ohio State Camaro has been designed with a 44-mile all-electric range. It also features an 18.9 kWh Li-ion energy storage system, a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85) fuel, a 5-speed automated manual transmission, and a 150 kW peak electric machine. This report details the design and modeling process followed by the Ohio State team during Year 1 of the competition. The process included researching the customer needs of the vehicle, determining team design goals, initial modeling, and selecting a vehicle architecture.
Journal Article

Driver’s Response Prediction Using Naturalistic Data Set

2019-04-02
2019-01-0128
Evaluating the safety of Autonomous Vehicles (AV) is a challenging problem, especially in traffic conditions involving dynamic interactions. A thorough evaluation of the vehicle’s decisions at all possible critical scenarios is necessary for estimating and validating its safety. However, predicting the response of the vehicle to dynamic traffic conditions can be the first step in the complex problem of understanding vehicle’s behavior. This predicted response of the vehicle can be used in validating vehicle’s safety. In this paper, models based on Machine Learning were explored for predicting and classifying driver’s response. The Naturalistic Driving Study dataset (NDS), which is part of the Strategic Highway Research Program-2 (SHRP2) was used for training and validating these Machine Learning models.
Technical Paper

Effect of Traffic, Road and Weather Information on PHEV Energy Management

2011-09-11
2011-24-0162
Energy management plays a key role in achieving higher fuel economy for plug-in hybrid electric vehicle (PHEV) technology; the state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining the fuel consumed. The energy management algorithm should be designed to meet all driving scenarios while achieving the best possible fuel economy. The knowledge of the power requirement during a driving trip is necessary to achieve the best fuel economy results; performance of the energy management algorithm is closely related to the amount of information available in the form of road grade, velocity profiles, trip distance, weather characteristics and other exogenous factors. Intelligent transportation systems (ITS) allow vehicles to communicate with one another and the infrastructure to collect data about surrounding, and forecast the expected events, e.g., traffic condition, turns, road grade, and weather forecast.
Technical Paper

Effects of Thermal and Auxiliary Dynamics on a Fuel Cell Based Range Extender

2018-04-03
2018-01-1311
Batteries are useful in Fuel Cell Hybrid Electric Vehicles (FCHEV) to fulfill transient demands and for regenerative braking. Efficient energy management strategies paired with optimal powertrain design further improves the efficiency. In this paper, a new methodology to simultaneously size the propulsive elements and optimize the power-split strategy of a Range Extended Battery Electric Vehicle (REBEV), using a Polymer Electron Membrane Fuel Cell (PEMFC), is proposed and preliminary studies on the effects of the driving mission profile and the auxiliary power loads on the sizing and optimal performance of the powertrain design are carried out. Dynamic Programming is used to compute the optimal energy management strategy for a given driving mission profile, providing a global optimal solution.
Technical Paper

Ensuring Fuel Economy Performance of Commercial Vehicle Fleets Using Blockchain Technology

2019-04-02
2019-01-1078
In the past, research on blockchain technology has addressed security and privacy concerns within intelligent transportation systems for critical V2I and V2V communications that form the backbone of Internet of Vehicles. Within trucking industry, a recent trend has been observed towards the use of blockchain technology for operations. Industry stakeholders are particularly looking forward to refining status quo contract management and vehicle maintenance processes through blockchains. However, the use of blockchain technology for enhancing vehicle performance in fleets, especially while considering the fact that modern-day intelligent vehicles are prone to cyber security threats, is an area that has attracted less attention. In this paper, we demonstrate a case study that makes use of blockchains to securely optimize the fuel economy of fleets that do package pickup and delivery (P&D) in urban areas.
Journal Article

Fast Simulation of Wave Action in Engine Air Path Systems Using Model Order Reduction

2016-04-05
2016-01-0572
Engine downsizing, boosting, direct injection and variable valve actuation, have become industry standards for reducing CO2 emissions in current production vehicles. Because of the increasing complexity of the engine air path system and the high number of degrees of freedom for engine charge management, the design of air path control algorithms has become a difficult and time consuming process. One possibility to reduce the control development time is offered by Software-in-the-Loop (SIL) or Hardware-in-the-Loop (HIL) simulation methods. However, it is significantly challenging to identify engine air path system simulation models that offer the right balance between fidelity, mathematical complexity and computational burden for SIL or HIL implementation.
Technical Paper

Impact Welding of Aluminum Alloy 6061 to Dual Phase 780 Steel Using Vaporizing Foil Actuator

2015-04-14
2015-01-0701
Vaporizing Foil Actuators (VFA) are based on the phenomenon of rapid vaporization of thin metallic foils and wires, caused by passage of a capacitor bank driven current on the order of 100 kA. The burst of the conductor is accompanied with a high-pressure pulse, which can be used for working metal at high strain rates. This paper focuses on the use of VFA for collision welding of dissimilar metals, in particular, aluminum and steel. Aluminum alloy 6061 sheets of 1 mm thickness were launched to velocities in excess of 650 m/s with input electrical energy of 8 kJ into 0.0762 mm thick, dog-bone shaped aluminum foil actuators. Target sheets made from dual phase steel (DP780) were impacted with the aluminum flyer sheet, and solid state impact welds were created. During mechanical testing, many samples failed outside the weld area, thereby indicating that the weld was stronger than the parent aluminum.
Technical Paper

Mission-based Design Space Exploration for Powertrain Electrification of Series Plugin Hybrid Electric Delivery Truck

2018-04-03
2018-01-1027
Hybrid electric vehicles (HEV) are essential for reducing fuel consumption and emissions. However, when analyzing different segments of the transportation industry, for example, public transportation or different sizes of delivery trucks and how the HEV are used, it is clear that one powertrain may not be optimal in all situations. Choosing a hybrid powertrain architecture and proper component sizes for different applications is an important task to find the optimal trade-off between fuel economy, drivability, and vehicle cost. However, exploring and evaluating all possible architectures and component sizes is a time-consuming task. A search algorithm, using Gaussian Processes, is proposed that simultaneously explores multiple architecture options, to identify the Pareto-optimal solutions.
Technical Paper

Model and Controls Development of a Post-Transmission PHEV for the EcoCAR 3 Competition

2016-04-05
2016-01-1252
The Ohio State University EcoCAR 3 team is designing a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of reducing the environmental impact of the vehicle, the Ohio State Camaro has been designed to have a 44-mile all-electric range. The vehicle is to consist of an 18.9 kWh Li-ion energy storage system, a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85) fuel, a 5-speed automated manual transmission, and a 150 kW peak-power electric machine. This report details the model and controls development process followed by the Ohio State team during Year 1 of the EcoCAR 3 competition. The focus of the paper will be on overall development of a vehicle model, initial simulation results, and supervisory controls development. Finally, initial energy consumption results from the model and future improvements will be discussed.
Technical Paper

Modeling, Control, and Adaptation for Shift Quality Control of Automatic Transmissions

2019-04-02
2019-01-1129
The parameters determining shift quality control in automatic transmissions are determined as part of the calibration of the transmission control. The resulting control system typically has three components: feedforward control, where the control output is determined before a gearshift; feedback control, where the control output is determined during the gearshift based on sensed feedback; and learning control (adaptation), where the feedforward or feedback controller parameters are modified after the current gearshift has ended and before the next similar gearshift begins. Gearshifts involving the same ratio change are referred to here as similar gearshifts, though such gearshifts may involve differences in other variables such as vehicle speed or engine torque.
Technical Paper

Multiple Rear-end Collisions in Freeway Traffic, Their Causes and Their Avoidance

1970-02-01
700085
The sensitivity factor, λ, of stimulus-response car following equations was computed, based on response times, τ, obtained from aerial survey data. Vehicles of a platoon are investigated as they approach, proceed through, and leave behind a kinematic disturbance, and an inherent local and asymptotic instability is discovered. Aerial survey data is used in a numerical example to demonstrate how multiple rear-end collisions can be triggered by one vehicle. A driver aid system, informing drivers about the differential velocity between lead and following vehicles, could improve stability, although the final answer appears to lie in automated or semi-automated longitudinal control systems.
Technical Paper

Optimizing Battery Cooling System for a Range Extended Electric Truck

2019-04-02
2019-01-0158
Battery packs used in electrified automotive powertrains support heavy electrical loads resulting in significant heat generation within them. Cooling systems are used to regulate the battery pack temperatures, helping to slow down battery aging. Vehicle-level energy consumption simulations serve as a first step for determining the specifications of a battery cooling system based on the duty cycle and interactions with the rest of the powertrain. This paper presents the development of a battery model that takes into account the energy impact of heating in the battery and demonstrates its use in a vehicle-level energy consumption simulator to set the specifications of a suitable cooling system for a vehicle application. The vehicle application used in this paper is a Class 6 Pickup and Delivery commercial vehicle with a Range-Extended Electric Vehicle (REEV) powertrain configuration.
Technical Paper

Plant Modeling and Software Verification for a Plug-in Hybrid Electric Vehicle in the EcoCAR 2 Competition

2015-04-14
2015-01-1229
The EcoCAR 2: Plugging into the Future team at The Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 44 miles of all-electric range. The vehicle features an 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 50 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This paper details three years of modeling and simulation development for the OSU EcoCAR 2 vehicle. Included in this paper are the processes for developing simulation platform and model requirements, plant model and soft ECU development, test development and validation, automated regression testing, and controls and calibration optimization.
Technical Paper

Reducing Fuel Consumption by Using Information from Connected and Automated Vehicle Modules to Optimize Propulsion System Control

2019-04-02
2019-01-1213
Global regulatory targets and customer demand are driving the automotive industry to improve vehicle fuel efficiency. Methods for achieving increased efficiency include improvements in the internal combustion engine and an accelerating shift toward electrification. A key enabler to maximizing the benefit from these new powertrain technologies is proper systems integration work - including developing optimized controls for the propulsion system as a whole. The next step in the evolution of improving the propulsion management system is to make use of available information not typically associated with the powertrain. Advanced driver assistance systems, vehicle connectivity systems and cloud applications can provide information to the propulsion management system that allows a shift from instantaneous optimization of fuel consumption, to optimization over a route. In the current paper, we present initial work from a project being done as part of the DOE ARPA-E NEXTCAR program.
X