Refine Your Search

Topic

Author

Search Results

Technical Paper

A Unified, Scalable and Replicable Approach to Development, Implementation and HIL Evaluation of Autonomous Shuttles for Use in a Smart City

2019-04-02
2019-01-0493
As the technology in autonomous vehicle and smart city infrastructure is developing fast, the idea of smart city and automated driving has become a present and near future reality. Both Highway Chauffeur and low speed shuttle applications are tested recently in different research to test the feasibility of autonomous vehicles and automated driving. Based on examples available in the literature and the past experience of the authors, this paper proposes the use of a unified computing, sensing, communication and actuation architecture for connected and automated driving. It is postulated that this unified architecture will also lead to a scalable and replicable approach. Two vehicles representing a passenger car and a small electric shuttle for smart mobility in a smart city are chosen as the two examples for demonstrating scalability and replicability.
Technical Paper

Acoustic Characteristics of Automotive Catalytic Converter Assemblies

2004-03-08
2004-01-1002
An experimental study of the acoustic characteristics of automotive catalytic converters is presented. The investigation addresses the effects and relative importance of the elements comprising a production catalytic converter assembly including the housing, substrate, mat and seals. Attenuation characteristics are measured for one circular and one oval catalytic converter geometry, each having 400 cell per square inch substrates. For each geometry, experimental results are presented to address the effect of individual components in isolation, and in combination with other assembly components. Additional experiments investigate the significance of acoustic paths around the substrate and through the peripheral wall of the substrate. The experimental results are compared to address the significance of each component on the overall attenuation.
Technical Paper

Adaptation of TruckSim Models to Simulate Experimental Heavy Truck Hard Braking Test Data Under Various Levels of Brake Disablement

2010-10-05
2010-01-1920
This research focuses on the development and performance of analytical models to simulate a tractor-semitrailer in straight-ahead braking. The simulations were modified and tuned to simulate full-treadle braking with all brakes functioning correctly, as well as the behavior of the tractor-semitrailer rig under full braking with selected brakes disabled. The models were constructed in TruckSim and based on a tractor-semitrailer used in dry braking performance testing. The full-scale vehicle braking research was designed to define limits for engineering estimates on stopping distance when Class 8 air-braked vehicles experience partial degradation of the foundation brake system. In the full scale testing, stops were conducted from 30 mph and 60 mph, with the combination loaded to 80,000 lbs (gross combined weight or GCW), half payload, and with the tractor-semitrailer unladen (lightly loaded vehicle weight, or LLVW).
Technical Paper

An Approach to Model a Traffic Environment by Addressing Sparsity in Vehicle Count Data

2023-04-11
2023-01-0854
For realistic traffic modeling, real-world traffic calibration data is needed. These data include a representative road network, road users count by type, traffic lights information, infrastructure, etc. In most cases, this data is not readily available due to cost, time, and confidentiality constraints. Some open-source data are accessible and provide this information for specific geographical locations, however, it is often insufficient for realistic calibration. Moreover, the publicly available data may have errors, for example, the Open Street Maps (OSM) does not always correlate with physical roads. The scarcity, incompleteness, and inaccuracies of the data pose challenges to the realistic calibration of traffic models. Hence, in this study, we propose an approach based on spatial interpolation for addressing sparsity in vehicle count data that can augment existing data to make traffic model calibrations more accurate.
Technical Paper

Application of Adversarial Networks for 3D Structural Topology Optimization

2019-04-02
2019-01-0829
Topology optimization is a branch of structural optimization which solves an optimal material distribution problem. The resulting structural topology, for a given set of boundary conditions and constraints, has an optimal performance (e.g. minimum compliance). Conventional 3D topology optimization algorithms achieve quality optimized results; however, it is an extremely computationally intensive task which is, in general, impractical and computationally unachievable for real-world structural optimal design processes. Therefore, the current development of rapid topology optimization technology is experiencing a major drawback. To address the issues, a new approach is presented to utilize the powerful abilities of large deep learning models to replicate this design process for 3D structures. Adversarial models, primarily Wasserstein Generative Adversarial Networks (WGAN), are constructed which consist of 2 deep convolutional neural networks (CNN) namely, a discriminator and a generator.
Technical Paper

Assessment of Driving Simulators for Use in Longitudinal Vehicle Dynamics Evaluation

2022-03-29
2022-01-0533
In the last decade, the use of Driver-in-the-Loop (DiL) simulators has significantly increased in research, product development, and motorsports. To be used as a verification tool in research, simulators must show a level of correlation with real-world driving for the chosen use case. This study aims to assess the validity of a low-cost, limited travel Vehicle Dynamics Driver-in-Loop (VDDiL) simulator by comparing on-road and simulated driving data using a statistical evaluation of longitudinal and lateral metrics. The process determines if the simulator is appropriate for verifying control strategies and optimization algorithms for longitudinal vehicle dynamics and evaluates consistency in the chosen metrics. A validation process explaining the experiments, choice of metrics, and analysis tools used to perform a validation study from the perspective of the longitudinal vehicle model is shown in this study.
Technical Paper

Biologically Inspired, Intelligent Muscle Material for Sensing and Responsive Delivery of Countermeasures

2000-07-10
2000-01-2514
The design and development of new biologically inspired technologies based on intelligent materials that are capable of sensing the levels of target biomolecules and, if needed, trigger appropriate countermeasures to regulate biological processes and rhythms of the astronauts is being undertaken in our laboratories. This is accomplished by coupling biologically inspired sensors that monitor the levels of the target biomolecules with intelligent polymeric materials that can regulate the release of a countermeasure. The technology developed here integrates sensors and artificial muscle material into a self-regulating device that can perform with minimal crew intervention. Further, it takes advantage of microfabrication technology to construct lightweight and robust responsive delivery systems. These “intelligent” devices address the need for the control and regulation of biological processes and rhythms under spaceflight conditions.
Technical Paper

Co-Simulation Framework for Electro-Thermal Modeling of Lithium-Ion Cells for Automotive Applications

2023-08-28
2023-24-0163
Battery packs used in automotive application experience high-power demands, fast charging, and varied operating conditions, resulting in temperature imbalances that hasten degradation, reduce cycle life, and pose safety risks. The development of proper simulation tools capable of capturing both the cell electrical and thermal response including, predicting the cell’s temperature rise and distribution, is critical to design efficient and reliable battery packs. This paper presents a co-simulation model framework capable of predicting voltage, 2-D heat generation and temperature distribution throughout a cell. To capture the terminal voltage and 2-D heat generation across the cell, the simulation framework employs a high-fidelity electrical model paired with a charge balance model based on the Poisson equation. The 2-D volumetric heat generation provided by the charge balance model is used to predict the temperature distribution across the cell surface using CFD software.
Technical Paper

Comparison of Intermediate-Combustion Products Formed in Engine with and without Ignition

1955-01-01
550262
RESULTS of tests performed on a modified type F-4 CFR engine show that precombustion reactions in both the fired and motored engine gave the same carbonyl products. The maximum specific yields of these carbonyls were similar for a given fuel compressed with comparable pressure-time-temperature histories in both motored- and fired-engine tests. As the motored engine seems to duplicate precombustion reactions occurring in a fired engine under normal operating conditions, the authors of this paper conclude that the motored engine, offering ease of control and sampling, is a convenient and valid tool for combustion research.
Technical Paper

Criticality Assessment of Simulation-Based AV/ADAS Test Scenarios

2022-03-29
2022-01-0070
Testing any new safety technology of Autonomous Vehicles (AV) and Advanced Driver Assistance Systems (ADAS) requires simulation-based validation and verification. The specific scenarios used for testing, outline incidences of accidents or near-miss events. In order to simulate these scenarios, specific values for all the above parameters are required including the ego vehicle model. The ‘criticality’ of a scenario is defined in terms of the difficulty level of the safety maneuver. A scenario could be over-critical, critical, or under-critical. In over-critical scenarios, it is impossible to avoid a crash whereas, for under-critical scenarios, no action may be required to avoid a crash. The criticality of the scenario depends on various parameters e.g. speeds, distances, road/tire parameters, etc. In this paper, we propose a definition of criticality metric and identify the parameters such that a scenario becomes critical.
Technical Paper

Design of Robust Active Load-Dependent Vehicular Suspension Controller via Static Output Feedback

2013-09-24
2013-01-2367
In this paper, we focus on the active vehicular suspension controller design. A quarter-vehicle suspension system is employed in the system analysis and synthesis. Due to the difficulty and cost in the measuring of all the states, we only choose two variables to construct the feedback loop, that is, the control law is a static-output-feedback (SOF) control. However, the sensor reduction would induce challenges in the controller design. One of the main challenges is the NP-hard problem in the corresponding SOF controller design. In order to deal with this challenge, we propose a two-stage design method in which a state-feedback controller is firstly designed and then the state-feedback controller is used to decouple the nonlinear conditions. To better compensate for the varying vehicle load, a robust load-dependent control strategy is adopted. The proposed design methodology is applied to a suspension control example.
Technical Paper

Development and Calibration of the Large Omnidirectional Child ATD Head Finite Element Model

2021-04-06
2021-01-0922
To improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD), the National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) ATD. The LODC head is a redesigned HIII-10C head with mass properties and modified skin material required to match pediatric biomechanical impact response targets from the literature. A dynamic, nonlinear finite element (FE) model of the LODC head has been developed using the mesh generating tool Hypermesh based on the three-dimensional CAD model. The material data, contact definitions, and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The aluminum head skull is stiff relative to head flesh material and was thus modeled as a rigid material. For the actual LODC, the head flesh is form fit onto the skull and held in place through contact friction.
Technical Paper

Development of Virtual Fuel Economy Trend Evaluation Process

2019-04-02
2019-01-0510
With the advancement of the autonomous vehicle development, the different possibilities of improving fuel economy have increased significantly by changing the driver or powertrain response under different traffic conditions. Development of new fuel-efficient driving strategies requires extensive experiments and simulations in traffic. In this paper, a fuel efficiency simulator environment with existing simulator software such as Simulink, Vissim, Sumo, and CarSim is developed in order to reduce the overall effort required for developing new fuel-efficient algorithms. The simulation environment is created by combining a mid-sized sedan MATLAB-Simulink powertrain model with a realistic microscopic traffic simulation program. To simulate the traffic realistically, real roads from urban and highway sections are modeled in the simulator with different traffic densities.
Technical Paper

Development of a Gear Backlash Compensator for Electric Machines in P0-P4 Parallel Hybrid Drivelines

2023-04-11
2023-01-0454
Backlash is the movement between the gear teeth that allows them to mate without binding. Backlash can cause large torque fluctuations in vehicle powertrains when the input torque changes direction. These fluctuations cause a jerk and shuddering, which negatively affects drive quality. Input torque frequently changes direction in electric vehicles due to regenerative braking. Limiting zero crossings is an option for better drive quality; however, this leads to decreased vehicle efficiency. Because of this, modulating the torque through the backlash region is preferred, yet, if done poorly, it can result in sluggish torque response. This paper proposes a torque-shaping algorithm for an electric motor and gear/differential system to reduce backlash in electric vehicles. The control algorithm modulates the commanded torque’s rate of change based on the vehicle speed and zero-crossing torque.
Journal Article

Driver’s Response Prediction Using Naturalistic Data Set

2019-04-02
2019-01-0128
Evaluating the safety of Autonomous Vehicles (AV) is a challenging problem, especially in traffic conditions involving dynamic interactions. A thorough evaluation of the vehicle’s decisions at all possible critical scenarios is necessary for estimating and validating its safety. However, predicting the response of the vehicle to dynamic traffic conditions can be the first step in the complex problem of understanding vehicle’s behavior. This predicted response of the vehicle can be used in validating vehicle’s safety. In this paper, models based on Machine Learning were explored for predicting and classifying driver’s response. The Naturalistic Driving Study dataset (NDS), which is part of the Strategic Highway Research Program-2 (SHRP2) was used for training and validating these Machine Learning models.
Journal Article

Ductile Fracture Prediction of Automotive Suspension Components

2017-03-28
2017-01-0318
Characterization of the plastic and ductile fracture behavior of a ferrous casting commonly used for the steering knuckle of an automotive suspension system is presented in this work. Ductile fracture testing for various coupon geometries was conducted to simulate a wide range of stress states. Failure data for the higher stress triaxiality were obtained from tension tests conducted on thin flat specimens, wide flat specimens and axisymmetric specimens with varying notch radii. The data for the lower triaxiality were generated from thin-walled tube specimens subjected to torsional loading and compression tests on cylindrical specimens. The failure envelopes for the material were developed utilizing the test data and finite element (FE) simulations of the corresponding test specimens. Experiments provided the load-displacement response and the location of fracture initiation.
Technical Paper

Effects of Anti-Sway Bar Separation on the Handling Characteristics of a SUV

2021-04-06
2021-01-0976
A single-vehicle crash involving an SUV led to the study of the failure of the anti-sway bar linkage and tire pressure and their relative effects on the handling characteristics of the vehicle. The SUV, having been involved in a rollover, was found with the anti-sway bar drop link disconnected from the suspension lower A-arm assembly. Also, after the crash, the tire pressure in the front tires on the subject vehicle was measured to be above the value specified by the SUV manufacturer; however, the pressure for one of the rear tires was measured to be roughly half of the SUV manufacturer’s recommended pressure. The other rear tire was deflated. The testing described herein addresses the question of what effects the anti-sway bar drop link disconnection or reduced rear axle tire pressure would have on the SUV’s pre-accident handling and driveability.
Technical Paper

Effects of Thermal and Auxiliary Dynamics on a Fuel Cell Based Range Extender

2018-04-03
2018-01-1311
Batteries are useful in Fuel Cell Hybrid Electric Vehicles (FCHEV) to fulfill transient demands and for regenerative braking. Efficient energy management strategies paired with optimal powertrain design further improves the efficiency. In this paper, a new methodology to simultaneously size the propulsive elements and optimize the power-split strategy of a Range Extended Battery Electric Vehicle (REBEV), using a Polymer Electron Membrane Fuel Cell (PEMFC), is proposed and preliminary studies on the effects of the driving mission profile and the auxiliary power loads on the sizing and optimal performance of the powertrain design are carried out. Dynamic Programming is used to compute the optimal energy management strategy for a given driving mission profile, providing a global optimal solution.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Technical Paper

Experimental Investigation on Surge Phenomena in an Automotive Turbocharger Compressor

2018-04-03
2018-01-0976
Downsizing and turbocharging are today considered an effective way to reduce CO2 emissions in automotive gasoline engines, especially for the European and US markets. In the broad field of research and development for engine boosting systems, the instability phenomenon of surge has gathered considerable interest in recent years, as the main limiting factor to high performance boosting and boost pressure control. To this extent, developing an in-depth knowledge of the surge dynamics and on the phenomena governing the transition from stable to unstable operation can provide very valuable information for the design of the intake system and boost pressure control algorithms, allowing optimal boost pressure without compromising the transient response.
X