Refine Your Search

Topic

Author

Search Results

Journal Article

A Control-Oriented Knock Intensity Estimator

2017-09-04
2017-24-0055
The performance optimization of modern Spark Ignition engines is limited by knock occurrence: heavily downsized engines often are forced to work in the Knock-Limited Spark Advance (KLSA) range. Knock control systems monitor the combustion process, allowing to achieve a proper compromise between performance and reliability. Combustion monitoring is usually carried out by means of accelerometers or ion sensing systems, but recently the use of cylinder pressure sensors is also becoming frequent in motorsport applications. On the other hand, cylinder pressure signals are often available in the calibration stage, where SA feedback-control based on the pressure signal can be used to avoid damages to the engine during automatic calibration. A predictive real-time combustion model could help optimizing engine performance, without exceeding the allowed knock severity.
Journal Article

A Numerical Model for Flash Boiling of Gasoline-Ethanol Blends in Fuel Injector Nozzles

2011-09-11
2011-24-0003
Fuels are formulated by a variety of different components characterized by chemical and physical properties spanning a wide range of values. Changing the ratio between the mixture component molar fractions, it is possible to fulfill different requirements. One of the main properties that can be strongly affected by mixture composition is the volatility that represents the fuel tendency to vaporize. For example, changing the mixture ratio between alcohols and hydrocarbons, it is possible to vary the mixture saturation pressure, therefore the fuel vaporization ratio during the injection process. This paper presents a 1D numerical model to simulate the superheated injection process of a gasoline-ethanol mixture through real nozzle geometries. In order to test the influence of the mixture properties on flash atomization and flash evaporation, the simulation is repeated for different mixtures characterized by different gasoline-ethanol ratio.
Technical Paper

A RANS CFD 3D Methodology for the Evaluation of the Effects of Cycle By Cycle Variation on Knock Tendency of a High Performance Spark Ignition Engine

2014-04-01
2014-01-1223
Knocking combustions heavily limits the efficiency of Spark Ignition engines. The compression ratio is limited in the design stage of the engine development, letting to Spark Advance control the task of reducing the odds of abnormal combustions. A detailed analysis of knocking events can help improving engine performance and diagnosis strategies. An effective way is to use advanced 3D CFD (Computational Fluid Dynamics) simulation for the analysis and prediction of combustion performance. Standard 3D CFD approach is based on RANS (Reynolds Averaged Navier Stokes) equations and allows the analysis of the mean engine cycle. However knocking phenomenon is not deterministic and it is heavily affected by the cycle to cycle variation of engine combustions. A methodology for the evaluation of the effects of CCV (Cycle by Cycle Variability) on knocking combustions is here presented, based on both the use of Computation Fluid Dynamics (CFD) tools and experimental information.
Journal Article

Acoustic Emission Processing for Turbocharged GDI Engine Control Applications

2015-04-14
2015-01-1622
In the field of passenger car engines, recent research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting particularly stringent exhaust emissions limits. Knock and turbocharger control are two of the most critical factors that influence the achievement of maximum efficiency and satisfactory drivability, for this new generation of engines. The sound emitted from an engine encloses many information related to its operating condition. In particular, the turbocharger whistle and the knock clink are unmistakable sounds. This paper presents the development of real-time control functions, based on direct measurement of the engine acoustic emission, captured by an innovative and low cost acoustic sensor, implemented on a platform suitable for on-board application.
Technical Paper

Application of Acoustic and Vibration-Based Knock Detection Techniques to a High Speed Engine

2017-03-28
2017-01-0786
Knock control systems based on engine block vibrations analysis are widely adopted in passenger car engines, but such approach shows its main limits at high engine speeds, since knock intensity measurement becomes less reliable due to the increased background mechanical noise. For small two wheelers engines, knock has not been historically considered a crucial issue, mainly due to small-sized combustion chambers and mixture enrichment. Due to more stringent emission regulations and in search of reduced CO2 emissions, an effective on-board knock controller acquires today greater importance also for motorcycle applications, since it could protect the engine when different fuel types are used, and it could significantly reduce fuel consumption (by avoiding lambda enrichment and/or allowing higher compression ratios to be adopted). These types of engines typically work at high rotational speeds and the reduced signal to noise ratio makes knock onset difficult to identify.
Technical Paper

Application of a One-Dimensional Dilution and Evaporation Lubricant Oil Model to Predict Oil Evaporation under Different Engine Operative Conditions Considering a Large Hydrogen-Fuelled Engine

2023-08-28
2023-24-0009
The increasing environmental concern is leading to the need for innovation in the field of internal combustion engines, in order to reduce the carbon footprint. In this context, hydrogen is a possible mid-term solution to be used both in conventional-like internal combustion engines and in fuel cells (for hybridization purposes), thus, hydrogen combustion characteristics must be considered. In particular, the flame of a hydrogen combustion is less subjected to the quenching effect caused by the engine walls in the combustion chamber. Thus, the significant heating up of the thin lubricant layer upon the cylinder liner may lead to its evaporation, possibly and negatively affecting the combustion process, soot production. The authors propose an analysis which aims to address the behavior of different typical engine oils, (SAE0W30, SAE5W30, SAE5W40) under engine thermo-physical conditions considering a large hydrogen-fuelled engine.
Technical Paper

Automatic Combustion Control for Calibration Purposes in a GDI Turbocharged Engine

2014-04-01
2014-01-1346
Combustion phasing is crucial to achieve high performance and efficiency: for gasoline engines control variables such as Spark Advance (SA), Air-to-Fuel Ratio (AFR), Variable Valve Timing (VVT), Exhaust Gas Recirculation (EGR), Tumble Flaps (TF) can influence the way heat is released. The optimal control setting can be chosen taking into account performance indicators, such as Indicated Mean Effective Pressure (IMEP), Brake Specific Fuel Consumption (BSFC), pollutant emissions, or other indexes inherent to reliability issues, such as exhaust gas temperature, or knock intensity. Given the high number of actuations, the calibration of control parameters is becoming challenging.
Journal Article

Benchmarking Hybrid Concepts: On-Line vs. Off-Line Fuel Economy Optimization for Different Hybrid Architectures

2013-09-08
2013-24-0084
The recent advance in the development of various hybrid vehicle technologies comes along with the need of establishing optimal energy management strategies, in order to minimize both fuel economy and pollutant emissions, while taking into account an increasing number of state and control variables, depending on the adopted hybrid architecture. One of the objectives of this research was to establish benchmarking performance, in terms of fuel economy, for real time on-board management strategies, such as ECMS (Equivalent Consumption Minimization Strategy), whose structure has been implemented in a SIMULINK model for different hybrid vehicle concepts.
Journal Article

Combination of In-Cylinder Pressure Signal Analysis and CFD Simulation for Knock Detection Purposes

2009-09-13
2009-24-0019
A detailed analysis of knocking events can help improving engine performance and diagnosis strategies. The paper aim is a better understanding of the phenomena involved in knocking combustions through the combination of CFD and signals analysis tools. CFD simulations have been used in order to reproduce knock effect on the in-cylinder pressure trace. In fact, the in-cylinder pressure signal holds information about waves propagation and heat losses: for the sake of the diagnosis it is important to relate knock severity to knock indexes values. For this purpose, a CFD model has been implemented, able to predict the combustion evolution with respect to Spark Advance, from non-knocking up to heavy knocking conditions. The CFD model validation phase is crucial for a correct representation of both regular and knocking combustions: the operation has been carried out by means of an accurate statistical analysis of experimental in-cylinder pressure data.
Technical Paper

Combined Optimization of Energy and Battery Thermal Management Control for a Plug-in HEV

2019-10-07
2019-24-0249
This paper presents an optimization algorithm, based on discrete dynamic programming, that aims to find the optimal control inputs both for energy and thermal management control strategies of a Plug-in Hybrid Electric Vehicle, in order to minimize the energy consumption over a given driving mission. The chosen vehicle has a complex P1-P4 architecture, with two electrical machines on the front axle and an additional one directly coupled with the engine, on the rear axle. In the first section, the algorithm structure is presented, including the cost-function definition, the disturbances, the state variables and the control variables chosen for the optimal control problem formulation. The second section reports the simplified quasi-static analytical model of the powertrain, which has been used for backward optimization. For this purpose, only the vehicle longitudinal dynamics have been considered.
Technical Paper

Comparison of Modern Powertrains Using an Energy Model Based on Well-to-Miles Analysis

2023-08-28
2023-24-0005
The need to reduce carbon dioxide emissions from motor vehicles pushes the European Union towards drastic choices on future mobility. Despite this, the engines of the “future” have not yet been defined: the choice of engine type will undoubtedly depend on the type of application (journey length, availability of recharging/refueling facilities), practical availability of alternative fuels, and electricity to recharge the batteries. The electrification of vehicles (passenger and transportation cars) may be unsuitable for several aspects: the gravimetric energy density could be too low if the vehicle has to be lightweight, must achieve a high degree of autonomy, or needs a very short refueling time.
Technical Paper

DGI - Direct Gasoline Injection Status of Development for Spark-Ignited Engines

2002-11-19
2002-01-3519
The first part of the paper gives an overview of the results obtained with European GDI-powered vehicles launched on the market. Thereafter, a discussion of in-vehicle limitations due to the exhaust gas after-treatment system requirements is given. The paper continues with a description of the current development status of European lean stratified direct injection system layouts. A detailed presentation is made of the mixture preparation system key components, basic control algorithms and the necessary new high-level experimental and analytical development tools. Particularly the topic of the multi-purpose use of 3-D numerical simulation is addressed both in the development and the engine control strategy calibration phases. The development of a small 1.6 liter lean stratified engine project is taken as example to demonstrate the dual application capability of the 3D simulation tool.
Technical Paper

Detailed Study of Ethanol In-cylinder Combustion Behavior by means of a Numerical Virtual Engine Model Approach

2005-11-22
2005-01-3989
The paper presents a study made to define the optimal parameter configuration, which enables the mixture preparation, and ignition systems to perform a low-temperature engine start by pure ethanol fuelling without misfiring or failure. A numerical virtual engine, simulating the behavior of a real small displacement 8 valves passenger car engine, is set up to describe and understand the physical phenomena of mixture preparation, spatial and temporal in-cylinder mixture distribution and the ignition/combustion events. The complex phenomena, which govern the gas flow patterns and mixture formation in the intake port and the combustion chamber are particularly analyzed during low-temperature engine cranking. Furthermore is discussed the influence of open and closed valve injection modes.
Technical Paper

Development and Experimental Validation of a Control-Oriented Empirical Exhaust Gas Temperature Model

2020-09-27
2020-24-0008
Modern turbo-charged downsized engines reach high values of specific power, causing a significant increase of the exhaust gas temperature. Such parameter plays a key role in the overall powertrain environmental impact because it strongly affects both the catalyst efficiency and the turbine durability. In fact, common techniques to properly manage the turbine inlet gas temperature are based on mixture enrichment, which causes both a steep increase in specific fuel consumption and a decrease of catalyst efficiency. At the test bench, exhaust gas temperature is typically measured using thermocouples that are not available for on-board application, and such information is processed to calibrate open-loop look-up-tables. A real-time, reliable, and accurate exhaust temperature model would then represent a strategic tool for improving the performance of the engine control system.
Technical Paper

Development and Software in the Loop Validation of a Model-based Water Injection Combustion Controller for a GDI TC Engine

2019-04-02
2019-01-1174
Turbocharged (TC) engines work at high Indicated Mean Effective Pressure (IMEP), resulting in high in-cylinder pressures and temperatures, improving thermal efficiency, but at the same time increasing the possibility of abnormal combustion events like knock and pre-ignition. To mitigate knocking conditions, engine control systems typically apply spark retard and/or mixture enrichment, which decrease indicated work and increase specific fuel consumption. Many recent studies have advocated Water Injection (WI) as an approach to replace or supplement existing knock mitigation techniques. Water reduces temperatures in the end gas zone due to its high latent heat of vaporization. Furthermore, water vapor acts as diluent in the combustion process. In this paper, the development of a novel closed-loop, model-based WI controller is discussed and critically analyzed.
Technical Paper

Development and Validation of a Control-Oriented Analytic Engine Simulator

2019-09-09
2019-24-0002
Due to the recent anti-pollution policies, the performance increase in Spark Ignition (SI) engines is currently under the focus of automotive manufacturers. This trend drives control systems designers to investigate accurate solutions and build more sophisticated algorithms to increase the efficiency of this kind of engines. The development of a control strategy is composed of several phases and steps, and the first part of such process is typically spent in defining and investigating the logic of the strategy. During this phase it is often useful to have a light engine simulator, which allows to have robust synthetic combustion data with a low calibration and computational effort. In the first part of this paper, a description of the control-oriented ANalytical Engine SIMulator (ANESIM) is carried out.
Technical Paper

Development of a Digital Twin to Support the Calibration of a Highly Efficient Spark Ignition Engine

2023-06-26
2023-01-1215
The role of numerical simulations in the development of innovative and sustainable powertrains is constantly growing thanks to their capabilities to significantly reduce the calibration efforts and to point out potential synergies among different technologies. In such a framework, this paper describes the development of a fully physical 1D-CFD engine model to support the calibration of the highly efficient spark ignition engine of the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) EU H2020 project. The availability of a reliable simulation platform is essential to effectively exploit the combination of the several features introduced to achieve the project target of 47% peak gross indicated efficiency, such as SwumbleTM in-cylinder charge motion, Miller cycle combined with high Compression Ratio (CR), lean mixture exploiting cooled low pressure Exhaust Gas Recirculation (EGR) and electrified turbocharging.
Technical Paper

DualMode Sporty Exhaust Development

2011-04-12
2011-01-0926
An exhaust system comprises at least one muffler, the back pressure generated by the muffler exponentially grows as the engine speed increases. Accordingly, fuel consumption and direct CO2 emissions are penalized due to the back pressure generated by the muffling body in order to reduce noise emissions. To obviate this, it has been suggested to construct an exhaust system with two differentiated paths according to the engine speed, so that at low speeds the exhaust gases follow a first high acoustic attenuation (high back pressure) path, while at high speeds (high exhaust gas pressure), the exhaust gases follow a second low acoustic attenuation (low back pressure) path. Simulation and experimental analysis will be presented. A control valve is provided to alternatively direct the exhaust gases along the desired path according to the engine speed. These control valves usually include an electric or electro-pneumatic actuator, but are heavy, large in size and expensive.
Technical Paper

Enhanced Mixture Preparation Approach for Lean Stratified SI-Combustion by a Combined Use of GDI and Electronically Controlled Valve-Timing

2000-03-06
2000-01-0532
The first part of the paper gives an overview of the current status in fuel consumption gain of the GDI-vehicles previously launched on the European market. In order to increase the potential for a further gain in specific fuel consumption the behaviour of 3 different combustion chamber layouts are studied. The chamber layouts are aimed to adapt as well as possible to the particular requirements for application to a small displacement/small bore engine working in stratified lean conditions. The paper continues with a description of the application that shows the different steps of a structured optimisation methodology for a 1.2 litre, small bore 4-cylinder engine. The applications of an air-motion-guided and a wall-guided layout with a mechanically actuated valve train to the same combustion chamber are discussed. The potential of the air-motion-guided concept is enhanced through the introduction of an electromagnetic fully variable valve train.
Technical Paper

Ethanol to Gasoline Ratio Detection via Time-Frequency Analysis of Engine Acoustic Emission

2012-09-10
2012-01-1629
In order to reduce both polluting emissions and fuel costs, many countries allow mixing ethanol to gasoline either in fixed percentages or in variable percentages. The resulting fuel is labeled E10 or E22, where the number specifies the ethanol percentage. This operation significantly changes way the stoichiometric value, which is the air-to-fuel mass ratio theoretically needed to completely burn the mixture. Ethanol concentration must be correctly estimated by the Engine Management System to optimally control exhaust emissions, fuel economy and engine performance. In fact, correct fuel quality recognition allows estimating the actual stoichiometric value, thus allowing the catalyst system to operate at maximum efficiency in any engine working point. Moreover, also other essential engine control functions should be adapted in real time by taking into account the quality of the fuel that is being used.
X