Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Technical Paper

A 2D Model for Tractor Tire-Soil Interaction: Evaluation of the Maximum Traction Force and Comparison with Experimental Results

2011-04-12
2011-01-0191
The paper investigates the interaction between soil and tractor tires through a 2D numerical model. The tire is schematized as a rigid ring presenting a series of rigid tread bars on the external circumference. The outer profile of the tire is divided into a series of elements, each one able to exchange a normal and a tangential contact force with the ground. A 2D soil model was developed to compute the forces at the ground-tire interface: the normal force is determined on the basis of the compression of the soil generated by the sinking of the tire. The soil is modeled through a layer of springs characterized by two different stiffness for the loading (lower stiffness) and unloading (higher stiffness) condition. This scheme allows to introduce a memory effect on the soil which results stiffer and keeps a residual sinking after the passage of the tire. The normal contact force determines the maximum value of tangential force provided before the soil fails.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

A Comprehensive Model to Predict the Initial Stage of Combustion in SI Engines

2013-04-08
2013-01-1087
A correct prediction of the initial stages of the combustion process in SI engines is of great importance to understand how local flow conditions, fuel properties, mixture stratification and ignition affect the in-cylinder pressure development and pollutant formation. However, flame kernel growth is governed by many interacting processes including energy transfer from the electrical circuit to the gas phase, interaction between the plasma channel and the flow field, transition between different combustion regimes and gas expansion at very high temperatures. In this work, the authors intend to present a comprehensive, multi-dimensional model that can be used to predict the initial combustion stages in SI engines. In particular, the spark channel is represented by a set of Lagrangian particles where each one of them acts as a single flame kernel.
Technical Paper

A Comprehensive Numerical Model for Numerical Simulation of Ice Accretion and Electro-Thermal Ice Protection System in Anti-icing and De-icing Mode, with an Ice Shedding Analysis

2023-06-15
2023-01-1463
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved.
Journal Article

A Constant Equivalence Ratio Multi-Zone Approach for a Detailed and Fast Prediction of Performances and Emission in CI Engines

2022-03-29
2022-01-0381
The paper illustrates and validates a novel predictive combustion model for the estimation of performances and pollutant production in CI engines. The numerical methodology was developed by the authors for near real-time applications, while aiming at an accurate description of the air mixing process by means of a multi-zone approach of the air-fuel mass. Charge stratification is estimated via a 2D representation of the fuel spray distribution that is numerically derived by an axial one-dimensional control-volume description of the direct injection. The radial coordinate of each control volume is reconstructed a posteriori by means of a local distribution function. Fuel mass clustered in each zone is further split in ‘liquid’, ‘unburnt’ and ‘burnt’ sub-zones, given the local properties of the fuel spray control volumes with respect to space-time location of modelled ignition delay, liquid length, and flame lift-off.
Journal Article

A Kinetic Modelling Study of Alcohols Operating Regimes in a HCCI Engine

2017-09-04
2017-24-0077
Pursuing a sustainable energy scenario for transportation requires the blending of renewable oxygenated fuels such as alcohols into commercial hydrocarbon fuels. From a chemical kinetic perspective, this requires the accurate description of both hydrocarbon reference fuels (n-heptane, iso-octane, toluene, etc.) and oxygenated fuels chemistry. A recent systematic investigation of linear C2-C5 alcohols ignition in a rapid compression machine at p = 10-30 bar and T = 650- 900 K has extended the scarcity of fundamental data at such conditions, allowing for a revision of the low temperature chemistry for alcohol fuels in the POLIMI mechanism. Heavier alcohols such as n-butanol and n-pentanol present ignition characteristic of interest for application in HCCI engines, due to the presence of the hydroxyl moiety reducing their low temperature reactivity compared to the parent linear alkanes (i.e. higher octane number).
Technical Paper

A LES Study on the Evolution of Turbulent Structures in Moving Engine Geometries by an Open-Source CFD Code

2014-04-01
2014-01-1147
The dynamics and evolution of turbulent structures inside an engine-like geometry are investigated by means of Large Eddy Simulation. A simplified configuration consisting of a flat-top cylinder head with a fixed, axis-centered valve and low-speed piston has been simulated by the finite volume CFD code OpenFOAM®; the standard version of the software has been extended to include the compressible WALE subgrid-scale model, models for the generation of synthetic turbulence, some improvements to the mesh motion strategy and algorithms for LES data post-processing. In order to study both the initial transient and the quasi- steady operating conditions, ten complete engine cycles have been simulated. Phase and spatial averages have been performed over cycles three to ten in order to extract first and second moment of velocity; these quantities have then been used to validate the numerical procedure by comparison against experimental data.
Technical Paper

A Low Temperature Pathway Operating the Reduction of Stored Nitrates in Pt-Ba/Al2O3 Lean NOx Trap Systems

2006-04-03
2006-01-1368
In this paper the low temperature reduction process of nitrates stored at high temperatures over model Pt-Ba/Al2O3 LNT catalysts using both H2 and C3H6 is analyzed. The results indicate that over the Pt-Ba/Al2O3 catalyst the reduction of stored NOx with both H2 and C3H6 occurs at temperature below those corresponding to their thermal stability. Accordingly, the reduction process occurs through a Pt-catalyzed surface reaction, which does not involve, as a preliminary step, the thermal decomposition of the adsorbed NOx species. The occurrence of such a pathway also requires the co-presence of the storage element and of the noble metal on the same support.
Technical Paper

A Method for the Characterization of Off-Road Terrain Severity

2006-10-31
2006-01-3498
Highway and roadway surface measurement is a practice that has been ongoing for decades now. This sort of measurement is intended to ensure a safe level of road perturbances. The measurement may be conducted by a slow moving apparatus directly measuring the elevation of the road, at varying distance intervals, to obtain a road profile, with varying degrees of resolution. An alternate means is to measure the surface roughness at highway speeds using accelerometers coupled with high speed distance measurements, such as laser sensors. Vehicles out rigged with such a system are termed inertial profilers. This type of inertial measurement provides a sort of filtered roadway profile. Much research has been conducted on the analysis of highway roughness, and the associated metrics involved. In many instances, it is desirable to maintain an off-road course such that the course will provide sufficient challenges to a vehicle during durability testing.
Technical Paper

A Modeling Study of Soot and De-NOx Reaction Phenomena in SCRF Systems

2011-06-09
2011-37-0031
The development of thermally durable zeolite NH3/Urea-SCR formulations coupled with that of high porosity filters substrates has opened the way to integrate PM and NOx control into a single device, namely an SCR-coated Diesel Particulate Filter (SCRF). A few experimental works are already present in the literature regarding SCRF systems, mainly addressing the DeNOx performances of the system (in both presence and absence of soot) under both steady state and transient conditions. The purpose of the present work is to perform a simulation study focused on phenomena which are expected to play key roles in SCRF systems, such as coupling of reaction and diffusion phenomena, soot effect on DeNOx activity, SCR coating effect on soot regeneration and filtration efficiency and competition between soot oxidation and DeNOx processes involving NO2.
Technical Paper

A Novel 1D Co-Simulation Framework for the Prediction of Tailpipe Emissions under Different IC Engine Operating Conditions

2019-09-09
2019-24-0147
The accurate prediction of pollutant emissions generated by IC engines is a key aspect to guarantee the respect of the emission regulation legislation. This paper describes the approach followed by the authors to achieve a strict numerical coupling of two different 1D modeling tools in a co-simulation environment, aiming at a reliable calculation of engine-out and tailpipe emissions. The main idea is to allow an accurate 1D simulation of the unsteady flows and wave motion inside the intake and exhaust systems, without resorting to an over-simplified geometrical discretization, and to rely on advanced thermodynamic combustion models and kinetic sub-models for the calculation of cylinder-out emissions. A specific fluid dynamic approach is then used to track the chemical composition along the exhaust duct-system, in order to evaluate the conversion efficiency of after-treatment devices, such as TWC, GPF, DPF, DOC, SCR and so on.
Technical Paper

A Numerical Study on the Sensitivity of Soot and NOx Formation to the Operating Conditions in Heavy Duty Engines

2018-04-03
2018-01-0177
In this paper, computation fluid dynamics (CFD) simulations are employed to describe the effect of flow parameters on the formation of soot and NOx in a heavy duty engine under low load and high load. The complexity of diesel combustion, specially when soot, NOx and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution. In this work, Multiple Representative Interactive Flamelets (MRIF) method is employed to describe the chemical reactions, ignition, flame propagation and emissions in the engine. A phenomenological model for soot formation, including soot nucleation, coagulation and oxidation with O2 and OH is incorporated into the flamelet combustion model. Different strategies for modelling NOx are chosen to take into account the longer time scale for NOx formation. The numerical results are compared with experimental data to show the validity of the model for the cases under study.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Quasi-3D Model for the Simulation of the Unsteady Flows in I.C. Engine Pipe Systems

2012-04-16
2012-01-0675
Increasing demands on the capabilities of engine simulation and the ability to accurately predict both performance and acoustics has lead to the development of several numerical tools to help engine manufacturers during the prototyping stage. The aid of CFD tools (3D and 1D) can remarkably reduce the duration and the costs of this stage. The need of achieving good accuracy, along with acceptable computational runtime, has given the spur to the development of a geometry based quasi-3D approach. This is designed to model the acoustics and the fluid dynamics of both intake and exhaust system components used in internal combustion engines. Models of components are built using a network of quasi-3D cells based primarily on the geometry of the system. The solution procedure is based on an explicitly time marching staggered grid approach making use of a flux limiter to prevent numerical instabilities.
Technical Paper

A Review of the State of the Art of Electric Traction Motors Cooling Techniques

2018-04-03
2018-01-0057
This paper provides a review on state-of-art modern cooling systems employed for thermal cooling of electric motors for vehicle applications. In recent years, the pursue of a more sustainable and ecofriendly mobility has pushed the research towards the development of electric vehicle powertrain systems. Besides the evident advantages of the adoption of electric traction systems in terms of pollution and efficiency, the need of an effective cooling system for the electric machine components gained more and more importance in order to maintain high efficiency and ensure high durability. In fact, it is known that high temperatures can be harmful for the electric motor: besides the evident damages for mechanical parts, the influence on the permanent magnet properties is not negligible [1] [2]. In this fast-evolving environment, different solutions for the thermal problem have been researched and adopted, each one with its own pros and cons.
Technical Paper

Analysis and Optimization of Metallic Based Substrates for After-Treatment System by Means of Full-Scale CFD Simulations and Experiments

2023-04-11
2023-01-0369
The tightening trend of regulations on the levels of admitted pollutant emissions has given a great spur to the research work in the field of combustion and after-treatment devices. Despite the improvements that can be applied to the development of the combustion process, pollutant emissions cannot be reduced to zero; for this reason, the aftertreatment system will become a key component in the path to achieving near-zero emission levels. This study focuses on the numerical analysis and optimization of different metallic substrates, specifically developed for three-way catalyst (TWC) and Diesel oxidation catalyst (DOC) applications, to improve their thermal efficiency by reducing radial thermal losses through the outer mantle. The optimization process relies on computational fluid dynamics (CFD) simulations supported by experimental measurements to validate the numerical models carried out under uncoated conditions, where chemical reactions do not occur.
Technical Paper

Analytical and Experimental Handling Performance of Ultra-Efficient Lightweight Vehicles

2023-08-28
2023-24-0135
The rising environmental awareness has led to a growing interest in electric and lightweight vehicles. Four-wheeled Ultra-Efficient Lightweight Vehicles (UELVs) have the potential to improve the quality of urban life, reduce environmental impact and make efficient use of land. However, the safety of these vehicles in terms of dynamic behaviour needs to be better understood. This paper aims to provide a quantitative assessment of the handling behaviour of UELVs. An analytical single-track model and a numerical simulation by VI-CarRealTime are analysed to evaluate the dynamic performance of a UELV compared to a city car. This analysis shows that the lightweight vehicle has a higher readiness (i.e. lower reaction time to yaw rate) for step steering and lower steering effort (i.e. higher steady-state value). Experimental analysis through real-time driving sessions on the Dynamic Driving Simulator assesses vehicle responses and subjective perception for different manoeuvres.
Technical Paper

Application of the CTC Model to Predict Combustion and Pollutant Emissions in a Common-Rail Diesel Engine Operating with Multiple Injections and High EGR

2012-04-16
2012-01-0154
Multiple injections and high EGR rates are now widely adopted for combustion and emissions control in passenger car diesel engines. In a wide range of operating conditions, fuel is provided through one to five separated injection events, and recirculated gas fractions between 0 to 30% are used. Within this context, fast and reliable multi-dimensional models are necessary to define suitable injection strategies for different operating points and reduce both the costs and time required for engine design and development. In this work, the authors have applied a modified version of the characteristic time-scale combustion model (CTC) to predict combustion and pollutant emissions in diesel engines using advanced injection strategies. The Shell auto-ignition model is used to predict auto-ignition, with a suitable set of coefficients that were tuned for diesel fuel.
Journal Article

CFD Assessment of an After-Treatment System Equipped with Electrical Heating for the Reduction of the Catalyst Light-Off Time

2023-04-11
2023-01-0366
The reduction of the catalyst light-off time at the engine cold start represents a key factor for the pollutant emissions control from vehicles tested on homologation cycles and real drive conditions. The adoption of heating strategies to increase the temperature of the catalytic substrate in the early phase of the engine start is regarded as a promising solution. The present study focuses on the application of electrical heated catalyst (EHC) in an after-treatment line for a spark-ignition gasoline engine. The analysis is carried out by means of an advanced CFD framework, which includes the modeling of catalytic reactions in the substrates and accounts for the thermal evolution of all the components included in the after-treatment system.
X