Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Combustion System Optimization of a Low Compression-Ratio PCCI Diesel Engine for Light-Duty Application

A new combustion system with a low compression ratio (CR), specifically oriented towards the exploitment of partially Premixed Charge Compression Ignition (PCCI) diesel engines, has been developed and tested. The work is part of a cooperative research program between Politecnico di Torino (PT) and GM Powertrain Europe (GMPT-E) in the frame of Low Temperature Combustion (LTC) diesel combustion-system design and control. The baseline engine is derived from the GM 2.0L 4-cylinder in-line, 4-valve-per-cylinder EU5 engine. It features a CR of 16.5, a single stage VGT turbocharger and a second generation Common Rail (1600 bar). A newly designed combustion bowl was applied. It features a central dome and a large inlet diameter, in order to maximize the air utilization factor at high load and to tolerate advanced injection timings at partial load. Two different piston prototypes were manufactured by changing the internal volume of the new bowl so as to reach CR targets of 15.5 and 15.
Technical Paper

Integrated CAD/CAE Functional Design for Engine Components and Assembly

In the present paper, starting from a first attempt design of engine components, a CAD/CAE integrated approach for designing engine is proposed. As first step, some typological quantities are setting in order to define the designed engine, for example the number of cylinders, displacements, thermodynamic cycle and geometrical constraints. Using literature approach and tailored design methodologies, the developed software provides the geometric parameters of the main engine components: crankshaft, piston, wrist pin, connecting rod, bedplate, engine block, cylinder head, bearings, valvetrain. Form the geometrical parameters, the developed software, using 3D CAD parametric models, defines a first functional model of each component and of their mutual interactions. Then a numerical analysis can be evaluated and it provides important feedback result for design targets. In the paper the particular case of a crank mechanism model is presented.
Journal Article

Internal Combustion Engine Design: a Practical Computational Methodology

Internal combustion engine design is a complex operation in which a large quantity of variables must be considered. In industrial field, a new internal combustion engine project starts from the development of well-established solution and from the designer experience. The aim of this research is the development of a series of procedures to design and to verify all main engine components starting from a deep bibliographic research. Every engine component (crankshaft, piston, piston pin, connecting rod, engine block, engine head, bearings and valvetrain) has its own interface for the design and the check. First of all, a deep bibliographic analysis was performed in order to find the best design procedures and a series of geometrical and thermodynamic data for a generic internal combustion engine. All these data are used as calculation input data.
Journal Article

Numerical Investigation on the Effects of Different Thermal Insulation Strategies for a Passenger Car Diesel Engine

One of the key technologies for the improvement of the diesel engine thermal efficiency is the reduction of the engine heat transfer through the thermal insulation of the combustion chamber. This paper presents a numerical investigation on the effects of the combustion chamber insulation on the heat transfer, thermal efficiency and exhaust temperatures of a 1.6 l passenger car, turbo-charged diesel engine. First, the complete insulation of the engine components, like pistons, liner, firedeck and valves, has been simulated. This analysis has showed that the piston is the component with the greatest potential for the in-cylinder heat transfer reduction and for Brake Specific Fuel Consumption (BSFC) reduction, followed by firedeck, liner and valves. Afterwards, the study has been focused on the impact of different piston Thermal Barrier Coatings (TBCs) on heat transfer, performance and wall temperatures.
Technical Paper

Rapid Optimal Design of a Light Vehicle Hydraulic Brake System

Designing automobile brake systems is generally complex and time consuming. Indeed, the brake system integrates several components and has to satisfy numerous conflicting government regulations. Due to these constraints, designing an optimal configuration is not easy. This paper consequently proposes a simple, intuitive and automated methodology that enables rapid optimal design of light vehicle hydraulic brake systems. Firstly, the system is modeled through cascaded analytical equations for each component. A large design space is then generated by varying the operational parameters of each component in its specific reasonable range. The system components under consideration include the brake pedal, the master cylinder, the vacuum-assisted booster, the brake line and the brake pistons. Successful system configurations are identified by implementing the requirements of the two most relevant safety homologation standards for light vehicle brake systems (US and EU legislations).