Refine Your Search

Topic

Author

Search Results

Technical Paper

3DOF Vehicle Dynamics Model for Fuel Consumption Estimation

2024-04-09
2024-01-2757
The dynamic model is built in Siemens Simcenter Amesim platform and simulates the performances on track of JUNO, a low energy demanding Urban Concept vehicle to take part in the Shell Eco-Marathon competition, in which the goal is to achieve the lowest fuel consumption in covering some laps of a racetrack, with limitations on the maximum race time. The model starts with the longitudinal dynamics, analysing all the factors that characterize the vehicle’s forward resistance, like aerodynamic forces, altimetry changes and rolling resistance. To improve the correlation between simulation and track performances, the model has been updated with the implementation of a Single-Track Model, including vehicle rotation around its roll axis, and a 3D representation of the racetrack, with an automatic trajectory following control implemented. This is crucial to characterise the vehicle’s lateral dynamics, which cannot be neglected in simulating its performances on track.
Technical Paper

A Deep Learning based Virtual Sensor for Vehicle Sideslip Angle Estimation: Experimental Results

2018-04-03
2018-01-1089
Modern vehicles have several active systems on board such as the Electronic Stability Control. Many of these systems require knowledge of vehicle states such as sideslip angle and yaw rate for feedback control. Sideslip angle cannot be measured with the standard sensors present in a vehicle, but it can be measured by very expensive and large optical sensors. As a result, state observers have been used to estimate sideslip angle of vehicles. The current state of the art does not present an algorithm which can robustly estimate the sideslip angle for vehicles with all-wheel drive. A deep learning network based sideslip angle observer is presented in this article for robust estimation of vehicle sideslip angle. The observer takes in the inputs from all the on board sensors present in a vehicle and it gives out an estimate of the sideslip angle. The observer is tested extensively using data which are obtained from proving grounds in high tire-road friction coefficient conditions.
Journal Article

A Fuel Cell Based Propulsion System for General Aviation Aircraft: The ENFICA-FC Experience

2011-10-18
2011-01-2522
The hydrogen and fuel cell power based technologies that are rapidly emerging can be exploited to start a new generation of propulsion systems for light aircraft and small commuter aircraft. Different studies were undertaken in recent years on fuel cells in aeronautics. Boeing Research & Technology Centre (Madrid) successfully flew its converted Super Dimona in 2008 relying on a fuel cell based system. DLR flew in July 2009 with the motor-glider Antares powered by fuel cells. The goal of the ENFICA-FC project (ENvironmentally Friendly Inter City Aircraft powered by Fuel Cells - European Commission funded project coordinated by Prof. Giulio Romeo) was to develop and validate new concepts of fuel cell based power systems for more/all electric aircrafts belonging to a “inter-city” segment of the market.
Technical Paper

A Methodology to Investigate the Dynamic Characteristics of ESP and EHB Hydraulic Units

2006-04-03
2006-01-1281
The paper deals with the Hardware-In-the-Loop based methodology which was adopted to evaluate the dynamic characteristics of Electronic Stability Program (ESP) and Electro-Hydraulic Brake (EHB) components. Firstly, it permits the identification of the time delays due to the hardware of the actuation system. Secondly, the link between the hardware of the hydraulic unit and a vehicle model running in real time permits the objective evaluation of the performance induced by the single components of different hydraulic units in terms of vehicle dynamics. The paper suggests the main parameters and tests which can help the car manufacturer in evaluating ESP hydraulic units, without expensive road tests.
Journal Article

A New Approach for the Estimation of the Aerodynamic Damping Characteristics of the ETF Demonstrator

2011-10-18
2011-01-2649
Nautilus S.p.A. and the Polytechnic of Turin, in cooperation with Blue Engineering, have developed a very versatile product, the ELETTRA Twin Flyers [6] (ETF), which consists in a very innovative remotely-piloted airship equipped with high precision sensors and communication devices. This multipurpose platform is particularly suitable for border and maritime surveillance missions and for telecommunication, both in military and civil area. To assess the actual maneuver capabilities of the airship [14], a prototype of reduced size and complexity has been assembled [16]. Before the flight tests a further assessment on the flight simulator is needed, because the first version of the software is tuned on the full scale prototype. Steady state performance and static stability of the demonstrator have been evaluated with CFD analysis.
Technical Paper

A New Test Bench for HWA Fluid-Dynamic Characterization of a Two-Valved In-Piston-Bowl Production Engine

1995-10-01
952467
A new test bench has been set up and equipped in order to analyze the air mean motion and turbulence quantities in the combustion system of an automotive diesel engine with one helicoidal intake duct and a conical type in-piston bowl. A sophisticated HWA technique employing single- and dual-sensor probes was applied to the in-cylinder flow investigation under motored conditions. The anemometric probe was also operated as a thermometric sensor. An analytical-numerical procedure, based on the heat balance equations for both anemometric and thermometric wires, was refined and applied to compute the gas velocity from the anemometer output signal. The gas property influence, the thermometric sensor lag and the prong temperature effects were taken into account with this procedure. The in-cylinder velocity data were reduced using both a cycle-resolved approach and the conventional ensemble-averaging procedure, in order to separate the mean flow from the fluctuating motion.
Technical Paper

A PEM Fuel Cell Laminar and Turbulent Models Comparison, Aiming at Identifying Small-Scale Plate Channel Phenomena: A Mesh Independent Configuration

2011-04-12
2011-01-1177
Computational Fluid Dynamics is a powerful instrument for PEM fuel cell systems development, testing and optimization. Considering the complication due to the multiple physical phenomena involved in the cell's operations, a good understanding of the micro-scale fluidic behavior in boundary layers is recommended: pressure drop along the reactants gas channels and the cooling channels has a sensible effect on parasite load in fuel cell systems (i.e. the power absorbed by the pump supplying the gases), as well as an important role in thermal transport. A correct thermal and fluid dynamic boundary layer prediction on the channel walls and the other contact surface with porous layers requires usually a dense finite element volumes discretization near wall, especially if laminar flows occur: therefore, the boundary layer computational cost tends to be the major one.
Technical Paper

A Possible Adaptive Wing Apparatus for New UAV Configurations

2015-09-15
2015-01-2463
The problem of wing shape modification under loads in order to enhance the aircraft performance and control is continuously improving by researchers. This requirement is in contrast to the airworthiness regulations that constraint stiffness and stress of the structure in order to maintain structural integrity under operative flight conditions. The lifting surface modification is more stringent in those cases, such as UAV configurations, where the installed power is limited but the variety of operative scenario is wider than in conventional aircraft. A possible solution for adaptive wing configuration can be found in the VENTURAS Project idea. The VENTURAS Project is a funded project with the aim of improve the wind turbine efficiency by means of introducing a twisting capability for the blade sections according to the best situation in any wind condition. The blade structure is composed by two parts: 1) internal supporting element, 2) external deformable envelope.
Technical Paper

A Prototype Vehicle for Powertrain and Chassis Control System Tests

2011-06-09
2011-37-0028
A prototype vehicle (PV) is equipped to test powertrain and active chassis systems with innovative control strategies for safety and energy saving. Additional sensors installed on-board allow the measurement and estimation of new information useful to the vehicle dynamic control. The PV was based on a serial production passenger car with Electronic Stability Control (ESC). Testing activities on Controller Area Network (CAN) and ESC Electronic Control Unit (ECU) are carried out to compare the vehicle dynamic performance obtainable using serial production rather than customized control strategies, while maintaining the same hardware. The PV is also utilized to provide reverse engineering analysis about the implemented control strategy for the ESC working in serial production mode.
Journal Article

A Reduced Order Model for the Aeroelastic Analysis of Flexible Wings

2013-09-17
2013-01-2158
The aeroelastic design of highly flexible wings, made of extremely light structures yet still capable of carrying a considerable amount of non-structural weights, requires significant effort. The complexity involved in such design demands for simplified mathematical tools based on appropriate reduced order models capable of predicting the accurate aeroelastic behaviour. The model presented in this paper is based on a consistent nonlinear beam model, capable of simulating the unconventional aeroelastic behaviour of flexible composite wings. The partial differential equations describing the wing dynamics are reduced to a dimensionless form in terms of three ordinary differential equations using a discretization technique, along with Galerkin's method. Within this approach the nonlinear structural model an unsteady indicial based aerodynamic model with dynamic stall are coupled.
Technical Paper

A Smart Measuring System for Vehicle Dynamics Testing

2020-04-14
2020-01-1066
A fast measurement of the car handling performance is highly desirable to easily compare and assess different car setup, e.g. tires size and supplier, suspension settings, etc. Instead of the expensive professional equipment normally used by car manufacturers for vehicle testing, the authors propose a low-cost solution that is nevertheless accurate enough for comparative evaluations. The paper presents a novel measuring system for vehicle dynamics analysis, which is based uniquely on the sensors embedded in a smartphone and therefore completely independent on the signals available through vehicle CAN bus. Data from tri-axial accelerometer, gyroscope, GPS and camera are jointly used to compute the typical quantities analyzed in vehicle dynamics applications.
Technical Paper

A Theoretical and Experimental Analysis of the Coulomb Counting Method and of the Estimation of the Electrified-Vehicles Electricity Balance in the WLTP

2020-06-30
2020-37-0020
The battery of a vehicle with an electrified powertrain (Hybrid Electric Vehicle or Battery Electric Vehicle), is required to operate with highly dynamic power outputs, both for charging and discharging operation. Consequently, the battery current varies within an extensive range during operation and the battery temperature also changes. In some cases, the relationship between the current flow and the change in the electrical energy stored seems to be affected by inefficiencies, in literature described as current losses, and nonlinearities, typically associated with the complex chemical and physical processes taking place in the battery. When calculating the vehicle electrical energy consumption over a trip, the change in the electrical energy stored at vehicle-level has to be taken into account. This quantity, what we could call the vehicle electricity balance, is typically obtained through a time-based integration of the battery current of all the vehicle batteries during operation.
Technical Paper

Aerodynamic Optimization Using Add-On Devices: Comparison Between CFD and Wind Tunnel Experimental Test

2022-03-29
2022-01-0885
JUNO is an urban concept vehicle (developed at the Politecnico of Torino), equipped by an ethanol combustion engine, designed to obtain low consumptions and reduced environmental impact. For these goals the main requirements that were considered during the designing process were mass reduction and aerodynamic optimization, at first on the shape of the car body and then, thanks to add-on devices. JUNO’s aerodynamic development follows a defined workflow: geometry definition and modelling, CFD simulations and analysis, and finally geometry changes and CFD new verification. In this paper the results of the CFD simulations (using STARCCM+ and RANS k-ε) with a corresponding 1/1 scale wind tunnel tests made using the real vehicle. Particularly, the results in term of: total drag coefficient (Cx), total lift coefficient (Cz), the total pressure in the side and rear analyzing twenty different aerodynamics configurations made up of different combination of some aerodynamics add-on devices.
Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

An Innovative Control Logic for a Four Wheel Steer Vehicle – Part 2: Simulation and Road Test

2005-04-11
2005-01-1268
A four wheel steer control logic is described. A first control logic release, obtained during previous research activity, is based only on feed forward (F.F.) but is here upgraded merging closed loop control (C.L.). Integration between F.F. and C.L. is described. Rear steering electromechanical actuator frequency response is analyzed, in order to consider its not ideal behaviour during control logic design. Several simulation are performed to qualitatively evaluate the error committed considering an ideal actuator during the control logic design. Specific manoeuvres are chosen to investigate about active system influence on vehicle handling; a 14 degrees of freedom vehicle model is validated in order to compare simulation results with experimental data.
Technical Paper

An Integrated Experimental and Numerical Methodology for Plug-In Hybrid Electric Vehicle 0D Modelling

2019-09-09
2019-24-0072
Governments worldwide are taking actions aiming to achieve a sustainable transportation system that can comprise of minimal pollutant and GHG emissions. Particular attention is given to the real-world emissions, i.e. to the emissions achieved in the real driving conditions, outside of a controlled testing environment. In this framework, interest in vehicle fleet electrification is rapidly growing, as it is seen as a way to simultaneously reduce pollutant and GHG emissions, while on the other hand OEMs are facing a significant increase in the number of tests which are needed to calibrate this new generation of electrified powertrains over a variety of different driving scenarios.
Technical Paper

An Integrated Methodology for 0D Map-Based Powertrain Modelling Applied to a 48 V Mild-Hybrid Diesel Passenger Car

2018-09-10
2018-01-1659
Nowadays, the 48 V vehicle architecture seems to be the perfect bridge between the 12 V system and the costly High Voltage (HV) electrification towards the crucial goal of CO2 and pollutants emissions reduction in combination with enhanced performance. However, this approach leads to an increased complexity in the interaction between different sub-systems targeting the optimization of the Energy Management System (EMS). Therefore, it becomes essential to perform a preliminary hardware assessment, exploring the interactions between the different components and quantifying the cost vs benefit trade-off. To this purpose, an integrated experimental/numerical methodology has been adopted: a comprehensive map-based Hybrid Electric Vehicle (HEV) model has been built, allowing the simulation of a variety of hybrid architectures, including both HV and 48 V systems.
Technical Paper

Analysis of the Impact of the WLTP Procedure on CO2 Emissions of Passenger Cars

2019-10-07
2019-24-0240
Until 2017 in Europe the Type Approval (TA) procedure for light duty vehicles for the determination of pollutant emissions and fuel consumption was based on the New European Driving Cycle (NEDC), a test cycle performed on a chassis dynamometer. However several studies highlighted significant discrepancies in terms of CO2 emissions between the TA test and the real world, due to the limited representativeness of the test procedure. Therefore, the European authorities decided to introduce a new, up-to date, test procedure capable to closer represent real world driving conditions, called Worldwide Harmonized Light Vehicles Test Procedure (WLTP). This work aims to analyze the effects of the new WLTP on vehicle CO2 emissions through both experimental and simulation investigations on two different Euro 5 vehicles, a petrol and a diesel car, representatives of average European passenger cars.
Technical Paper

Application of Adjoint Methods on Drag Reduction of Current Production Cars

2018-05-30
2018-37-0016
Automotive manufacturers are facing stronger and stronger pressure to optimize all aspects related to fuel consumption of cars, and aerodynamic drag makes no exception, due to increasing government enforcing rules for the reduction of the emissions and the increasing influence of aerodynamic performance on fuel consumption with WLTC and RDE driving cycles. Nowadays, CFD simulation is a common tool across automotive industries for the assessment and the optimization of vehicle resistance in the design phase. The full power of these numerical methods of studying many design variants in advance of experimental testing, however, can be fully exploited when coupled with optimization techniques, always keeping into account constraints and aesthetical demands. On the other hand, a massive use of CFD optimization can lead to unaffordable computational efforts or a limitation of the design exploration space.
Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
X