Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

A Computational Multiaxial Model for Stress-Strain Analysis of Ground Vehicle Notched Components

2017-03-28
2017-01-0329
Driveline and suspension notched components of off-road ground vehicles often experience multiaxial fatigue failures along notch locations. Large nominal load histories may induce local elasto-plastic stress and strain responses at the critical notch locations. Fatigue life prediction of such notched components requires detailed knowledge of local stresses and strains at notch regions. The notched components that are often subject to multiaxial loadings in services, experience complex stress and strain responses. Fatigue life assessment of the components utilizing non-linear Finite Element Analysis (FEA) require unfeasibly inefficient computation times and large data. The lack of more efficient and effective methods of elasto-plastic stress-strain calculation may lead to the overdesign or earlier failures of the components or costly experiments and inefficient non-linear FEA.
Technical Paper

A Review of Lattice Boltzmann Methods for Multiphase Flows Relevant to Engine Sprays

2005-04-11
2005-01-0996
This paper reviews some applications of lattice Boltzmann methods (LBM) to compute multiphase flows. The method is based on the solution of a kinetic equation which describes the evolution of the distribution of the population of particles whose collective behavior reproduces fluid behavior. The distribution is modified by particle streaming and collisions on a lattice. Modeling of physics at a mesoscopic level enables LBM to naturally incorporate physical properties needed to compute complex flows. In multiphase flows, the surface tension and phase segregation are incorporated by considering intermolecular attraction forces. Furthermore, the solution of the kinetic equations representing linear advection and collision, in which non-linearity is lumped locally, makes it parallelizable with relative ease. In this paper, a brief review of the lattice Boltzmann method relevant to engine sprays will be presented.
Technical Paper

Developing Education and Outreach Initiatives at the Indiana Space Grant Consortium

2009-07-12
2009-01-2546
The Indiana Space Grant Consortium is one of 52 members of the National Space Grant College and Fellowship Program (“Space Grant”), which was initiated by NASA in 1988. Space Grant is designed to be a source of NASA-related information, awards, and programs to enhance education, outreach, and workforce development for the United States. Based on the land grant model of public university education, Space Grant seeks to spread the vision of NASA to increase science, technology, engineering, and math (STEM) awareness; NASA-related education; workforce development; outreach and research activities. This paper describes the evolution of these activities in Indiana.
Technical Paper

Development of a SIL, HIL and Vehicle Test-Bench for Model-Based Design and Validation of Hybrid Powertrain Control Strategies

2014-04-01
2014-01-1906
Hybrid powertrains with multiple sources of power have generated new control challenges in the automotive industry. Purdue University's participation in EcoCAR 2, an Advanced Vehicle Technology Competition managed by the Argonne National Laboratories and sponsored by GM and DOE, has provided an exciting opportunity to create a comprehensive test-bench for the development and validation of advanced hybrid powertrain control strategies. As one of 15 competing university teams, the Purdue EcoMakers are re-engineering a donated 2013 Chevrolet Malibu into a plug-in parallel- through-the-road hybrid-electric vehicle, to reduce its environmental impact without compromising performance, safety or consumer acceptability. This paper describes the Purdue team's control development process for the EcoCAR 2 competition.
Technical Paper

Dynamic Simulation Techniques for Steering of Tracked Agricultural and Forestry Vehicles

1999-09-13
1999-01-2786
A procedure for simulating the dynamics of agricultural and forestry machines using mechanical system simulation software is presented. A soil/track interface model including rubber-track and steel-track was introduced as well as equations that can be used to model mechanical and hydraulic power trains commonly found in tracked vehicles. Two rubber-tracked vehicles (agricultural tractors) and two steel-tracked machines (forestry vehicles) were simulated to illustrate the technique, and some analysis results are presented. The examples given in this paper are based on the author’s research over the past several years.
Journal Article

Effects of Controlled Modulation on Surface Textures in Deep-Hole Drilling

2012-09-10
2012-01-1868
Deep-hole drilling is among the most critical precision machining processes for production of high-performance discrete components. The effects of drilling with superimposed, controlled low-frequency modulation - Modulation-Assisted Machining (MAM) - on the surface textures created in deep-hole drilling (ie, gun-drilling) are discussed. In MAM, the oscillation of the drill tool creates unique surface textures by altering the burnishing action typical in conventional drilling. The effects of modulation frequency and amplitude are investigated using a modulation device for single-flute gun-drilling on a computer-controlled lathe. The experimental results for the gun-drilling of titanium alloy with modulation are compared and contrasted with conventional gun-drilling. The chip morphology and surface textures are characterized over a range of modulation conditions, and a model for predicting the surface texture is presented. Implications for production gun-drilling are discussed.
Technical Paper

Fatigue Damage Modeling Approach Based on Evolutionary Power Spectrum Density

2019-04-02
2019-01-0524
Fatigue damage prediction approaches in both time and frequency domains have been developed to simulate the operational life of mechanical structures under random loads. Fatigue assessment of mechanical structures and components subjected to those random loads is increasingly being addressed by frequency domain approaches because of time and cost savings. Current frequency-based fatigue prediction methods focus on stationary random loadings (stationary Power Spectral Density), but many machine components, such as jet engines, rotating machines, and tracked vehicles are subjected to non-stationary PSD conditions under real service loadings. This paper describes a new fatigue damage modeling approach capable of predicting fatigue damage for structures exposed to non-stationary (evolutionary) PSD loading conditions where the PSD frequency content is time-varying.
Technical Paper

Fracture Mechanics Based Approach for Quantifying Corrosion Damage

1999-04-20
1999-01-1589
The objective of this project is to quantify structural degradation due to corrosion through a fracture mechanics based approach. The metric parameters employed are Equivalent Initial Flaw Size and general material loss. Another objective is to correlate a measurable property to the amount of structural durability damage from corrosion, ideally through current NDE technology, with eddy-current as the primary choice. The approach is comprised by the following areas: corroding aluminum alloys, evaluation of the corrosion through techniques such as surface roughness and eddy current, cyclic testing, calculation of corrosion metric, and, correlation between corrosion metric and physically measurable properties.
Journal Article

Graphene Coating as a Corrosion Protection Barrier for Metallic Terminals in Automotive Environments

2021-04-06
2021-01-0354
Inside an automobile, hundreds of connectors and electrical terminals in various locations experience different corrosive environments. These connectors and electrical terminals need to be corrosion-proof and provide a good electrical contact for a vehicle’s lifetime. Saltwater and sulfuric acid are some of the main corrosion concerns for these electrical terminals. Currently, various thin metallic layers such as gold (Au), silver (Ag), or tin (Sn) are plated with a nickel (Ni) layer on copper alloy (Cu) terminals to ensure reliable electrical conduction during service. Graphene due to its excellent chemical stability can serve as a corrosion protective layer and prevent electrochemical oxidation of metallic terminals. In this work, effects of thin graphene layers grown by plasma-enhanced chemical vapor deposition (PECVD) on Au and Ag terminals and thin-film devices were investigated. Various mechanical, thermal/humidity, and electrical tests were performed.
Technical Paper

Key Outcomes of Year One of EcoCAR 2: Plugging in to the Future

2013-04-08
2013-01-0554
EcoCAR 2: Plugging In to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 28 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Loading Balance and Influent pH in a Solids Thermophilic Aerobic Reactor

2005-07-11
2005-01-2982
The application of biological treatment to solid waste is very promising to facilitate recycling of water, carbon, and nutrients and to reduce the resupply needs of long-term crewed space missions. Degradation of biodegradable solid wastes generated during such a mission is under investigation as part of the NASA Center of Research and Training (NSCORT) at Purdue University. Processing in the solids thermophilic aerobic reactor (STAR) involves the use of high temperature micro-aerobic slurry conditions to degrade solid wastes, enabling the recycling of water, carbon, and nutrients for further downstream uses. Related research presently underway includes technical development and optimization of STAR operations as well as a complementary evaluation of post-STAR processing for gas-stream purification, water recovery by condensate purification, and residuals utilization for both mushroom growth media and nutritional support for fish growth.
Technical Paper

Modeling and Measurement of Occupied Car Seats

1999-05-17
1999-01-1690
An overview of model development for seated occupants is presented. Two approaches have been investigated for modeling the vertical response of a seated dummy: finite element and simplified mass-spring-damper methods. The construction and implementation of these models are described, and the various successes and drawbacks of each modeling approach are discussed. To evaluate the performance of the models, emphasis was also placed on producing accurate, repeatable measurements of the static and dynamic characteristics of a seated dummy.
Technical Paper

NASA's On-line Project Information System (OPIS) Attributes and Implementation

2006-07-17
2006-01-2190
The On-line Project Information System (OPIS) is a LAMP-based (Linux, Apache, MySQL, PHP) system being developed at NASA Ames Research Center to improve Agency information transfer and data availability, largely for improvement of system analysis and engineering. The tool will enable users to investigate NASA technology development efforts, connect with experts, and access technology development data. OPIS is currently being developed for NASA's Exploration Life Support (ELS) Project. Within OPIS, NASA ELS Managers assign projects to Principal Investigators (PI), track responsible individuals and institutions, and designate reporting assignments. Each PI populates a “Project Page” with a project overview, team member information, files, citations, and images. PI's may also delegate on-line report viewing and editing privileges to specific team members. Users can browse or search for project and member information.
Technical Paper

Regenerative Hydraulic Topographies using High Speed Valves

2009-10-06
2009-01-2847
This paper presents hydraulic topographies using a network of valves to achieve better energy efficiency, reliability, and performance. The Topography with Integrated Energy Recovery (TIER) system allows the valves and actuators to reconfigure so that flow from assistive loads on actuators can be used to move actuators with resistive loads. Many variations are possible, including using multiple valves with either a single pump/motor or with multiple pump/motors. When multiple pump/motors are used, units of different displacements can be chosen such that units are controlled to minimize time operating at low displacement, thus increasing overall system efficiency. Other variations include configurations allowing open loop or closed loop pump/motors to be used, the use of fixed displacement pump/motors, or the ability to store energy in an accumulator. This paper gives a system level overview and summarizes the hydraulic systems using the TIER approach.
Technical Paper

Research on Joining High Pressure Die Casting Parts by Self-Pierce Riveting (SPR) Using Ring-Groove Die Comparing to Heat Treatment Method

2020-04-14
2020-01-0222
Nowadays, the increasing number of structural high pressure die casting (HPDC) aluminum parts need to be joined with high strength steel (HSS) parts in order to reduce the weight of vehicle for fuel-economy considerations. Self-Pierce Riveting (SPR) has become one of the strongest mechanical joining solutions used in automotive industry in the past several decades. Joining HPDC parts with HSS parts can potentially cause joint quality issues, such as joint button cracks, low corrosion resistance and low joint strength. The appropriate heat treatment will be suggested to improve SPR joint quality in terms of cracks reduction. But the heat treatment can also result in the blister issue and extra time and cost consumption for HPDC parts. The relationship between the microstructure of HPDC material before and after heat treatment with the joint quality is going to be investigated and discussed for interpretation of cracks initiation and propagation during riveting.
Technical Paper

Solids Thermophilic Aerobic Reactor for Solid Waste Management in Advanced Life Support Systems

2004-07-19
2004-01-2467
Solids thermophilic aerobic reactor (STAR) processing of biodegradable solid waste residuals uses high temperature conditions to reduce waste volume, inactivate pathogens, and render products that may enter the recycle system by providing plant substrate, fish food, and mushroom growth medium. The STAR process recovers and enables the reuse of nutrients, water, and carbon. During the time of this study, STAR was operated at a 3% solids loading rate, with an 11-day retention time at a temperature range of 50-55°C. This document presents the following details: a the evolution to date of the STAR reactor b review of reactor operation and analytical methods c a synopsis of the performance results and related discussion, and d a synopsis of future goals relative to this project's associated research roadmap.
Technical Paper

The Status of Error Management and Human Factors in Regional Airlines

1999-04-20
1999-01-1594
This paper explores the current status of error management strategies and human factors efforts within regional airlines. It briefly addresses the potential needs of the environment from a perspective of the market’s accident and incident history as well as anecdotal reports received from members of the regional airline community. It also raises questions concerning the applicability of human factors and error management strategies developed in other segments of aviation to the problems faced within regional airline environments.
Technical Paper

Urine Processing for Water Recovery via Freeze Concentration

2005-07-11
2005-01-3032
Resource recovery, including that of urine water extraction, is one of the most crucial aspects of long-term life support in interplanetary space travel. This paper will consequently examine an innovative approach to processing raw, undiluted urine based on low-temperature freezing. This strategy is uniquely different from NASA's current emphasis on either ‘integrated’ (co-treatment of mixed urine, grey, and condensate waters) or ‘high-temperature’ (i.e., VCD [vapor compression distillation] or VPCAR [vapor phase catalytic ammonia removal]) processing strategies, whereby this liquid freeze-thaw (LiFT) procedure would avoid both chemical and microbial cross-contamination concerns while at the same time securing highly desirable reductions in likely ESM levels.
X