Refine Your Search

Topic

Author

Search Results

Technical Paper

3D CFD Analysis of the Influence of Some Geometrical Engine Parameters on Small PFI Engine Performances - The Effects on Tumble Motion and Mean Turbulent Intensity Distribution

2012-10-23
2012-32-0096
In scooter/motorbike engines coherent and stable tumble motion generation is still considered an effective mean in order to both reduce engine emissions and promote higher levels of combustion efficiency. The scientific research also assessed that squish motion is an effective mean for speeding up the combustion in a combustion process already fast. In a previous technical paper the authors demonstrated that for an engine having a high C/D ratio the squish motion is not only not necessary but also detrimental for the stability of the tumble motion itself, because there is a strong interaction between these two motions with the consequent formation of secondary vortices, which in turn penalizes the tumble breakdown and the turbulent kinetic energy production.
Technical Paper

3D Large Scale Simulation of the High-Speed Liquid Jet Atomization

2007-04-16
2007-01-0244
In this paper three-dimensional Large Eddy Simulations (i.e., LES) by using a PLIC-VOF method have been adopted to investigate the atomization process of round liquid jets issuing from automotive multi-hole injector-like nozzles. LES method is used to compute directly the effect of the large flow structure, being the smallest one modelled. A mesh having a cell size of 4 μm was used in order to derive a statistics of the detached liquid structures, i.e. droplets and ligaments. The latter have been identified by using an algorithm coded by authors. Cavitation modeling has not been included in the present computations. Two different mean injection nozzle flow velocities of 50 m/s and 270 m/s, corresponding to two mean nozzle flow Reynolds numbers of 1600 and 8700, respectively, have been considered in the calculations as representative of laminar and turbulent nozzle flow conditions.
Technical Paper

A 3D User and Maintenance Manual for UAVs and Commercial Aircrafts Based on Augmented Reality

2015-09-15
2015-01-2473
Traditional User/Maintenance Manuals provide useful information when dealing with simple machines. However, when dealing with complex systems of systems and highly miniaturized technologies, like UAVs, or with machines with millions of parts, a commercial aircraft is a case in point, new technologies taking advantage of Augmented Reality can rapidly and effectively support the maintenance operations. This paper presents a User/Maintenance Manual based on Augmented Reality to help the operator in the detection of parts and in the sequence to be followed to assemble/disassemble systems and subsystems. The proposed system includes a handheld device and/or an head mounted display or special goggles, to be used by on-site operators, with software management providing data fusion and overlaying traditional 2D user/maintenance manual information with an augmented reality software and appropriate interface.
Technical Paper

A Comparison between Caster and Lean Angle in Generating Variable Camber

2015-03-10
2015-01-0067
A variation in the camber of an automotive wheel is desired to compensate a side-slip force change owing to normal load transfer when the car is cornering. The camber of a steered wheel can be varied by adjusting caster or lean angle which are the representations of steering axis orientation. Thus, a smart camber can be created by a variable caster or lean angle. Choosing which parameter among the two angles to be variable is very important and dependent on its different effects. Here, homogeneous transformation is employed to establish camber as a function of caster, lean angle, and steering angle in the general case. A comparison between caster and lean angle based on different criteria is then made. The comparison shows that a variable caster is much better and more feasible than a variable lean angle in generating a smart camber.
Technical Paper

A Mesh Based Approach for Unconventional Unmanned Airship Added Masses Computation

2013-09-17
2013-01-2191
Added masses computation is a crucial aspect to be considered when the density of a body moving in a fluid is comparable to the density of the fluid displaced: added mass can be defined as the inertia added to a system because an accelerating or decelerating body displaces some volume of neighboring fluid as it moves through it. The motion of vehicles like airships and ships can be addressed only by keeping into account the effect of added masses, while in case of aircrafts and helicopters this contribution is usually neglected. Lighter Than Air flight simulation, unmanned airships flight control system, airships flight dynamics are typical applications in which added masses are fundamental to achieve an effective and realistic modeling. A panel based method using the mesh of an airship external shape is developed to account for the added massed.
Technical Paper

A Novel Approach to Cooperative and Non-Cooperative RPAS Detect-and-Avoid

2015-09-15
2015-01-2470
A unified approach to cooperative and non-cooperative Detect-and-Avoid (DAA) is a key enabler for Remotely Piloted Aircraft System (RPAS) to safely and routinely access all classes of airspace. In this paper state-of-the-art cooperative and non-cooperative DAA sensor/system technologies for manned aircraft and RPAS are reviewed and the associated multi-sensor data fusion techniques are discussed. A DAA system architecture is presented based on Boolean Decision Logics (BDL) for selecting non-cooperative and cooperative sensors/systems including both passive and active Forward Looking Sensors (FLS), Traffic Collision Avoidance System (TCAS) and Automatic Dependent Surveillance - Broadcast (ADS-B). After elaborating the DAA system processes, the key mathematical models associated with both non-cooperative and cooperative DAA functions are presented.
Technical Paper

A Novel Valve-Less Supercharged Small Two Stroke Engine of Top Brake Efficiency Above 36% and Power Density above 100 KW/Liter

2013-11-27
2013-01-2772
The paper presents a novel design for a two stroke thermal engine that delivers excellent fuel economy and low emissions within the constraints of today's cost, weight and size. The engine features asymmetrical port timing through a novel translating and rotating piston mechanism. The engine is externally scavenged and supercharged, has wet sump and oil pressure lubrication, direct injection, it is lightweight, easy to build, with minimal number of parts, low production cost, ability to be balanced and compact design. The two stroke mechanism produces a linear motion of the pistons as well as an elliptical path on the surface of the cylinder. This allows the piston to sweep as well as travel past the ports. Suitable slots around the raised lip of the piston generate the asymmetry that makes the exhaust port to open first and to close first. The inlet port remains open to complete the cylinder charging and allow supercharging. Direct fuel injection is adopted for best results.
Technical Paper

Aeroelastic Behaviour of Flexible Wings Carrying Distributed Electric Propulsion Systems

2017-09-19
2017-01-2061
An accurate aeroelastic assessment of powered HALE aircraft is of paramount importance considering that their behaviour contrasts the one of conventional aircraft mainly due to the use of high aspect-ratio wings with distributed propulsion systems. This particular configuration shows strong dependency of the wing natural frequencies to the propulsion distribution and operating conditions. Numerical and experimental investigations are carried out to better understand the behaviour of flexible wings, focusing on the effect of distributed electric propulsion systems. Several configurations are investigated, including a single propulsion system using an engine pod (a weight with embedded electric motor, a propeller, and the wing-attached structure) installed at selected spanwise positions, and configurations with two and three propellers.
Technical Paper

Airflow Parameters Near the Differential of a Rear Drive Passenger Car

2001-03-05
2001-01-1015
The paper presents experimental analysis of the airflow around the differential center housing of a rear drive full-scale passenger car. The study included investigation of local airflow total and static pressure, as well as surface flow visualization. Estimation of the local airflow velocity is based on the measured pressure coefficients. The experiments were carried out at different test facilities: in a climatic wind tunnel, in a full-scale wind tunnel and on-road. Influence of side wind was modeled by the yawing of the car in the full-scale wind tunnel. The results show the asymmetrical structure of the flow in both, vertical and horizontal planes. Estimated longitudinal relative local velocity decreases from maximum Vr ≈ 0.4 at the lower surface of the center housing, to about Vr ≈ 0 above the upper surface. Side wind increases airflow velocity around the center housing within the investigated yaw range ± 20°
Technical Paper

Airship and Hot Air Balloon Real Time Envelope Shape Prediction through a Cloth Simulation Technique

2015-09-15
2015-01-2578
The flight simulation of airships and hot air balloons usually considers the envelope geometry as a fixed shape, whose volume is eventually reduced by ballonets. However, the dynamic pressure or helium leaks in airships, and the release of air to allow descent in hot air balloons can significantly change the shape of the envelope leading to potential dangerous situations. In fact, in case of semi-rigid and non-rigid airships a reduction in envelope internal pressure can reduce the envelope bending stiffness leading to the loss of the typical axial-symmetric shape. For hot air balloons thing goes even worse since the lost of internal pressure can lead to the collapsing of the balloon shape to a sort of vertically stretched geometry (similar to a torch) which is not able to sustain the attached basket and its payload.
Technical Paper

An Integrated Software Environment for UAV Missions Support

2013-09-17
2013-01-2189
This paper describes the design and development of a virtual environment conceived to support flight operations of an Unmanned Air Vehicle (UAV) used for wind mapping in the proximity of existing or planned wind farms. The virtual environment can be used in pre-flight briefings aiming to define a trajectory from a list of waypoints, to change and eventually re-plan the mission in case of intersection with no fly zones, to simulate the mission, and to preview images/videos taken from the UAV on-board cameras. During flight, the tool can be used to compute the wind speed along the trajectory by analyzing the data streaming from the UAV. The integration of Augmented Reality (AR) techniques in the flight environment provides assistance in remotely piloted landings, and allows visualizing flight and environmental information that are critical to the mission.
Technical Paper

An Optical and Numerical Characterization of Directly Injected Compressed Natural Gas Jet Development at Engine-Relevant Conditions

2019-04-02
2019-01-0294
Compressed natural gas (CNG) is an attractive, alternative fuel for spark-ignited (SI), internal combustion (IC) engines due to its high octane rating, and low energy-specific CO2 emissions compared with gasoline. Directly-injected (DI) CNG in SI engines has the potential to dramatically decrease vehicles’ carbon emissions; however, optimization of DI CNG fueling systems requires a thorough understanding of the behavior of CNG jets in an engine environment. This paper therefore presents an experimental and modeling study of DI gaseous jets, using methane as a surrogate for CNG. Experiments are conducted in a non-reacting, constant volume chamber (CVC) using prototype injector hardware at conditions relevant to modern DI engines. The schlieren imaging technique is employed to investigate how the extent of methane jets is impacted by changing thermodynamic conditions in the fuel rail and chamber.
Technical Paper

Analysis of the Effects of Injection Pressure Variation in Gasoline Partially Premixed Combustion

2021-04-06
2021-01-0517
Compression-ignited engines are still considered the most efficient and reliable technology for automotive applications. However, current and future emission regulations, which severely limit the production of NOx, particulate matter and CO2, hinder the use of diesel-like fuels. As a matter of fact, the spontaneous ignition of directly-injected Diesel leads to a combustion process that is heterogeneous by nature, therefore characterized by the simultaneous production of particulate matter and NOx. In this scenario, several innovative combustion techniques have been investigated over the past years, the goal being to benefit from the high thermal efficiency of compression-ignited engines, which results primarily from high Compression Ratio and lean and unthrottled operation, while simultaneously mitigating the amount of pollutant emissions.
Technical Paper

Analysis of the Regenerative Braking Efficiency of a Latest Electric Vehicle

2013-11-27
2013-01-2872
Kinetic energy recovery systems (KERS) placed on one axle coupled to a traditional thermal engine on the other axle is possibly the best solution presently available to dramatically improve the fuel economy while providing better performances within strict budget constraints. Different KERS may be built purely electric, purely mechanic, or hybrid mechanic/electric differing for round trip efficiency, packaging, weights, costs and requirement of further research and development. The paper presents an experimental analysis of the energy flow to and from the battery of a latest Nissan Leaf covering the Urban Dynamometer Driving Schedule (UDDS). This analysis provides a state-of-the-art benchmark of the propulsion and regenerative braking efficiencies of electric vehicles with off-the-shelve technologies.
Journal Article

Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case

2016-03-14
2016-01-9041
Large Eddy Simulation (LES) represents nowadays one of the most promising techniques for the evaluation of the dynamics and evolution of turbulent structures characterizing internal combustion engines (ICE). In the present paper, subdivided into two parts, the capabilities of the open-source CFD code OpenFOAM® v2.3.0 are assessed in order to evaluate its suitability for engine cold flow LES analyses. Firstly, the code dissipative attitude is evaluated through an inviscid vortex convection test to ensure that the levels of numerical dissipation are compatible with LES needs. Quality and completeness estimators for LES simulations are then proposed. In particular the Pope M parameter is used as a LES completeness indicator while the LSR parameter provides useful insights far calibrating the grid density. Other parameters such as the two-grid LESIQk index are also discussed.
Technical Paper

Assessment of the Influence of Intake Duct Geometrical Parameters on the Tumble Motion Generation in a Small Gasoline Engine

2012-10-23
2012-32-0095
During the last years the deep re-examination of the engine design for lowering engine emissions involved two-wheel vehicles too. The IC engine overall efficiency plays a fundamental role in determining final raw emissions. From this point of view, the optimization of the in-cylinder flow organization is mandatory. In detail, in SI engines the generation of a coherent tumble vortex having dimensions comparable to the engine stroke could be of primary importance to extend the engines' ignition limits toward the field of the dilute/lean mixtures. For motorbike and motor scooter applications, the optimization of the tumble generation is considered an effective way to improve the combustion system efficiency and to lower emissions, considering also that the two-wheels layout represents an obstacle in adopting the advanced post-treatment concepts designed for automotive applications.
Technical Paper

Automated ATM System Enabling 4DT-Based Operations

2015-09-15
2015-01-2539
As part of the current initiatives aimed at enhancing safety, efficiency and environmental sustainability of aviation, a significant improvement in the efficiency of aircraft operations is currently pursued. Innovative Communication, Navigation, Surveillance and Air Traffic Management (CNS/ATM) technologies and operational concepts are being developed to achieve the ambitious goals for efficiency and environmental sustainability set by national and international aviation organizations. These technological and operational innovations will be ultimately enabled by the introduction of novel CNS/ATM and Avionics (CNS+A) systems, featuring higher levels of automation. A core feature of such systems consists in the real-time multi-objective optimization of flight trajectories, incorporating all the operational, economic and environmental aspects of the aircraft mission.
Journal Article

Benchmarking Hybrid Concepts: On-Line vs. Off-Line Fuel Economy Optimization for Different Hybrid Architectures

2013-09-08
2013-24-0084
The recent advance in the development of various hybrid vehicle technologies comes along with the need of establishing optimal energy management strategies, in order to minimize both fuel economy and pollutant emissions, while taking into account an increasing number of state and control variables, depending on the adopted hybrid architecture. One of the objectives of this research was to establish benchmarking performance, in terms of fuel economy, for real time on-board management strategies, such as ECMS (Equivalent Consumption Minimization Strategy), whose structure has been implemented in a SIMULINK model for different hybrid vehicle concepts.
Technical Paper

Bistatic DIAL for Multi-Species Aviation Pollutant Measurements from RPAS

2015-09-15
2015-01-2477
This paper presents the conceptual design of a new low-cost measurement system for the determination of pollutant concentrations associated with aircraft operations. The proposed system employs Light Detection and Ranging (LIDAR) and passive electro-optics equipment installed in two non-collocated components. The source component consists of a tuneable small-size and low-cost/weight LIDAR emitter, which can be installed either on airborne or ground-based autonomous vehicles, or in fixed surface installations. The sensor component includes a target surface calibrated for reflectance and passive electro-optics equipment calibrated for radiance, both installed on an adjustable support. The proposed bistatic system determines the column-averaged molecular and aerosol pollutant concentrations along the LIDAR beam by measuring the cumulative absorption and scattering phenomena along the optical slant range.
Technical Paper

CFD Analysis of a Wing-In-Ground-Effect (WIGE) Vehicle

2015-09-15
2015-01-2571
This paper introduces the Seabus SB-8, a new Wing-In-Ground-Effect (WIGE) craft designed for 8 - 10 passengers. The craft will be used for fast transportation across Port Phillip Bay in Melbourne, Australia. With a cruise speed of about 140 km/hr, it can cross the bay in 30 min as compared to 75 min for land transportation. Computational Fluid Dynamics (CFD) analysis was conducted on the design to determine aerodynamic properties at various angles of attack and operating heights. The influence of ground effect was also determined as well as the effect of Centre of Gravity (CG) position on longitudinal stability. Using flow visualization areas of potential flow separation were identified and interactions of wake vortices with different parts of the aircraft were determined. Note that some aspects of the design are proprietary.
X