Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Characterization of Oxygenated-Fuel Combustion by Quantitative Multiscalar SRS/LIF Measurements in a Diesel-Like Jet

2018-09-28
2018-01-5037
Due to experimental challenges, combustion of diesel-like jets has rarely been characterized by laser-based quantitative multiscalar measurements. In this work, recently developed laser diagnostics for combustion temperature and the concentrations of CO, O2, and NO are applied to a diesel-like jet, using a highly oxygenated fuel. The diagnostic is based on spontaneous Raman scattering (SRS) and laser-induced fluorescence (LIF) methods. Line imaging yields multiscalar profiles across the jet cross section. Measurements turn out to be particularly accurate, because near-stoichiometric combustion occurs in the central region of the jet. Thereby, experimental cross-influences by light attenuation and interfering emissions are greatly reduced compared to the combustion of conventional, sooting diesel fuel jets. This is achieved by fuel oxygenation and enhanced premixing.
Journal Article

Super-Knock Prediction Using a Refined Theory of Turbulence

2013-04-08
2013-01-1109
The occurrence of severe events of ‘super-knock’ originating from random pre-ignition kernels which sometimes is observed in turbo-charged spark-ignition engines was recently attributed by Kalghatgi and Bradley [4] to developing detonations which originate from a resonance between acoustic waves emitted by an auto-igniting ‘hot spot’ and a reaction wave which propagates along negative temperature gradients in the fuel-air mixture. Their occurrence depends on the steepness of the local instantaneous temperature gradient and on the length of the region of negative gradient. The theory requires that the temperature gradient extends smoothly over a sufficient length in the turbulent flow field. Then localized detonations may develop which are able to autoignite the entire charge within less than a millisecond and thus cause pre-ignition and ‘super-knock’.
Technical Paper

UV-Absorption Measurements by Spontaneous Raman Scattering in Low-Sooting Diesel-Like Jets

2018-10-11
2018-01-5042
UV-absorption measurements are sparse in diesel(-like) combustion, particularly close to the premixed burn. Thus, such measurements are conducted in diesel-like jets in a high-pressure vessel in this work, using 1D spontaneous Raman scattering (SRS) from N2. Stokes (~263 nm) and anti-Stokes (~235 nm) SRS induced by a krypton fluoride excimer (KrF*) laser (~248 nm) is exploited. Anti-Stokes SRS can be directly used for attenuation correction of laser-induced fluorescence (LIF) from NO at ~236 nm. Results show the importance of attenuation correction, although the jets are largely non-sooting. To identify absorbers, effects of SRS wavelength, measurement time in the injection event, location in the flame, jet width (JW), temperature, CO concentration, and injection pressure are considered. Particularly strong attenuation observed around the time of second-stage ignition appears to be primarily caused by combustion intermediates such as partially oxidized fuel.
X