Refine Your Search

Topic

Author

Search Results

Technical Paper

A Validated Numerical Simulation of Diesel Injector Flow Using a VOF Method

2000-10-16
2000-01-2932
Progress in Diesel spray modelling highly depends on a better knowledge of the instantaneous injection velocity and of the hydraulic section at the exit of each injection hole. Additionally a better identification of the mechanisms which cause fragmentation is needed. This necessitates to begin with a precise computation of the two-phase flow which arises due to the presence of cavitation within the injectors. For that aim, a VOF type interface tracking method has been developed and improved (Segment Lagrangian VOF method) which allows to describe numerically the onset and development of cavitation within Diesel injectors. Furthermore, experiments have been performed for validation purpose, on transparent one-hole injectors for high pressure injection conditions. Two different entrance geometries (straight and rounded) and various upstream and downstream pressure levels have been considered.
Technical Paper

Analysis of the Dynamics of a Hydraulic Control Circuit of an Automatic Gearbox

2003-03-03
2003-01-0317
The description of the supply pressure hydraulic circuit and the couplings between its components are presented. A comparison between simulations and experiments is carried out. Using some linear facilities, it is possible to conclude that the low frequency modes mainly correspond to the wave effects of hydraulic lines which connect valves to each other. In order to maintain a pressure in the supply circuit, an electronic pressure control is necessary. The design of a control law needs to build different linear models for different levels of pressure since the system is very non linear. Three transfer functions are found for three pressure levels. These transfer functions are very similar to the ones used by the automatic control department and obtained by experiments. Using these transfer functions it is possible to design the control law.
Technical Paper

Compressor Efficiency Extrapolation for 0D-1D Engine Simulations

2016-04-05
2016-01-0554
0D-1D codes allow researchers to obtain a prediction of the behavior of internal combustion engines with little computational effort. One of the submodels of such codes is devoted to the centrifugal compressor. This model is often based on the compressor performance maps, therefore requiring the extrapolation of the maps so that all possible operating conditions are covered. Particularly, a suitable extrapolation of isentropic efficiency map is sought. This work first examines different available methods for compressor efficiency extrapolation into off-design conditions. No method is found to provide satisfactory results at all extrapolated regions: low and high compressor speeds and low compression ratio at measured speeds. Hence, a new method is proposed and its accuracy is assessed with the aid of compressor off-design measurements.
Technical Paper

Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine

2017-03-28
2017-01-0669
The current trend of downsizing used in gasoline engines, while reducing fuel consumption and CO2 emissions, imposes severe thermal loads inside the combustion chamber. These critical thermodynamic conditions lead to the possible auto-ignition (AI) of fresh gases hot-spots around Top-Dead-Center (TDC). At this very moment where the surface to volume ratio is high, wall heat transfer influences the temperature field inside the combustion chamber. The use of a realistic wall temperature distribution becomes important in the case of a downsized engine where fresh gases hot spots found near high temperature walls can initiate auto-ignition. This paper presents a comprehensive numerical methodology for an accurately prediction of thermodynamic conditions inside the combustion chamber based on Conjugate Heat Transfer (CHT).
Technical Paper

Development of an Improved Gravimetric Method for the Mass Measurement of Diesel Exhaust Gas Particles

2005-05-11
2005-01-2145
The Particulate Measurement Programme (PMP) works on the identification of a method to replace or complete the existing particle mass (PM) measurement method. The French PMP subgroup, composed by IFP, PSA Peugeot-Citroën, Renault and UTAC, proposes an improved gravimetric method for the measurement of emitted particles, and conducted an inter-laboratory test to evaluate its performances. The technical programme is based on tests carried out on a Euro3 Diesel passenger car (PC), tested on the New European Driving Cycle (NEDC). To achieve low particulate matter (PM) emissions, the EGR is disconnected and a paraffinic fuel is used. The regulated pollutants are also measured. It is shown that the multiple filter weighing and a 0.1 μg balance instead of a 1 μg one are not necessary, as the first weighing and the 1 μg balance performances are satisfactory for type-approval purposes.
Technical Paper

Direct Injection of CNG on High Compression Ratio Spark Ignition Engine: Numerical and Experimental Investigation

2011-04-12
2011-01-0923
CNG is one of the most promising alternate fuels for passenger car applications. CNG is affordable, is available worldwide and has good intrinsic properties including high knock resistance and low carbon content. Usually, CNG engines are developed by integrating CNG injectors in the intake manifold of a baseline gasoline engine, thereby remaining gasoline compliant. However, this does not lead to a bi-fuel engine but instead to a compromised solution for both Gasoline and CNG operation. The aim of the study was to evaluate the potential of a direct injection spark ignition engine derived from a diesel engine core and dedicated to CNG combustion. The main modification was the new design of the cylinder head and the piston crown to optimize the combustion velocity thanks to a high tumble level and good mixing. This work was done through computations. First, a 3D model was developed for the CFD simulation of CNG direct injection.
Technical Paper

Euroncap~Views and suggestions for improvements

2001-06-04
2001-06-0087
Since its creation in 1996, Euroncap evaluated more than 80 cars, ranging from small and city cars, to larger vehicles such as executive cars and people carriers (MPVs). The testing protocol comprises 3 types of tests: a frontal offset test against a deformable barrier, a 90° lateral impact with a moving deformable barrier, and - since March 2000 - a pole side impact. In addition a set of subsystem tests with impactors on the bonnet and the front face of the car are conducted to assess the pedestrian protection. The aim of this paper is to review the testing and assessment protocols and to compare them with those used in other NCAP systems in the USA, Australia, Japan and Europe. In particular, important Euroncap issues such as the stiffness of heavier vehicles that could be increased in the future, and the nature and weight of the modifiers are discussed. Ways to improve the system are suggested in relation with real-world accident data.
Technical Paper

European Programme on Emissions, Fuels and Engine Technologies - Objectives and Design

1996-05-01
961065
The quality of the environment is a continuing concern of the public in Europe and has been the driving force for much research, development and expenditure by the European Vehicle and Oil Industries. Legislation that has already been implemented and planned provides substantial improvements in air quality. Further improvements however are harder to achieve. Consequently, it has been accepted that a variety of measures, including vehicle/fuel changes need to be investigated together to make further air quality improvements. This paper describes the principles and organisational structure of a co-operative programme carried out by the European automobile industry (represented by ACEA), and the European oil industry (represented by EUROPIA). This programme, building on US AQIRP, is an important input into the process for developing environmental Legislation for the European Union (the European Auto/Oil process).
Technical Paper

Experimental Investigation on the Characteristics and on the Reproducibility of the Flow issuing from a High-Pressure Direct-Injection Nozzle

1999-10-25
1999-01-3655
This paper presents an investigation on the experimental determination of some characteristics of the flow issuing from a swirl injector dedicated to direct-injection spark-ignited engines. The reproducibility, from one injection to another, of the temporal evolution of the liquid flow characteristics during the opening of the injector was investigated. This was achieved by using a high-speed film camera set at 8,000 images/s. The resulting visualizations allowed us to measure the evolution of the penetration length and velocity as well as of the liquid cone angle. It was found that the spray produced is a low momentum spray whose penetration length and velocity are small. The good reproducibility of the temporal evolution of the liquid flow characteristics has been obtained, except for the liquid cone angle during the opening stage. A fast-shutter video camera was also used to make images of the early development of the issuing liquid flow.
Technical Paper

Fatigue Analysis of Conrod Bearing

2011-04-12
2011-01-0197
For many years, bearing suppliers have been using the specific pressure to evaluate the fatigue risk of conrod bearings. However, modern engines have made the bearing more sensitive to various phenomena such as the thermal expansion or the elasticity of the conrod housing. These effects modify the stresses in the bearing layers and consequently fatigue risk. In this paper, we propose a new way to determine the bearing fatigue resistance. To achieve that, we analyze the elastic and plastic behavior of the bearing along the engine life. We detail and provide the analytical relationships which determine stresses in the overlay and in the substrate of the bearing in order to analyze their fatigue resistance. Various physical loads are taken into account such as the thermal load, the hydrodynamic pressure field, the fitting load, the free spread load. A good knowledge of the relationships between those physical phenomena helps to understand the mechanical behavior of the bearing.
Technical Paper

Fleet Management of the Future

1998-10-19
98C059
This paper deals with fleet management systems and the means to integrate new communication and computer technologies to improve transportation companies efficiency. It focuses on the integration of embedded electronic systems for communication and data management through the use of on-board computers, taking the point of view of the truck manufacturer. It introduces the idea of making the vehicle a nod of a complete communication network. After briefly presenting fleet management problematic and some of the major existing solutions, it analyzes how new technologies can be integrated and what major advantages they would bring.
Technical Paper

French Program on the Impact of Engine Technology on Particulate Emissions, Size Distribution and Composition Heavy Duty Diesel Study

2005-04-11
2005-01-0190
An extensive research program involving the French passenger car and heavy-duty (HD) vehicles manufacturers, sponsored by ADEME and realized by IFP, aimed to characterize in terms of size and composition the particulate emitted by the different engine technologies currently or soon available. The impact of engine settings and fuel composition was also studied. Numerous information was collected in this HD study revealing that fuel composition and particularly non-conventional fuels and engine settings strongly impact the particulate concentration and size distribution. Nucleation is likely to occur when there is less adsorption matter, for instance when post-injection is used or EGR is removed. Particulate composition, particularly PAH and sulfates content, is weakly bound to the size. Mineral elements distribution depends on their origin, lubrication oil or engine wear.
Technical Paper

Impact of EPEFE Data on the European Auto-Oil Process

1996-05-01
961076
The EPEFE research programme is the largest European investigation of the effects of vehicle/fuel technologies on exhaust emissions. This paper consolidates and summarizes the more than 500 000 data points and compares and contrasts the effects of fuel properties in different vehicles and engines. While the relationships between fuel properties/engine technologies and exhaust emissions are complex, it has been possible to develop equations that model these interactions. The paper demonstrates how the output of EPEFE has been used to predict inventories of emissions from the european traffic for the period 2000-2010. The need for continuing co-operation between the Oil/Auto Industries and the Legislative Authorities to further understand the complex relationships is discussed.
Technical Paper

Impact of Gasoline RON and MON on a Turbocharged MPI SI Engine Performances

2004-06-08
2004-01-2001
This paper presents a combustion study of gasoline anti-knock quality effects on turbocharged MPI SI engine performances. A comparative analysis between many fuels covering various Research Octane Number (RON), Motor Octane Number (MON) and sensitivity (RON-MON) is described. The study was conducted on steady state test bench, using a four cylinder 2 L engine. In turbocharged gasoline engines, knock resistance is more than ever a crucial issue to achieve high performance and good customer's consumption level. Octane level is therefore a fuel key parameter. Considering thermodynamic aspects of such combustion at full load, performances, fuel consumption and engine thermal strains are evaluated for each tested fuel. An important influence of RON at iso sensitivity was observed. Because of the extreme conditions met on turbocharged gasoline engine, the impact of RON is exacerbated on such engine and illustrates the great benefits of an increase RON fuel.
Technical Paper

Influence of the Micro- and Macro-Structural Parameters on the Dynamic Behavior of Structures Made of Polymers Reinforced with Short Glass Fibers

2018-06-13
2018-01-1501
In order to design vehicles with diminished gCO2/km emissions level, car manufacturers aim at reducing the weight of their vehicles. One of the solutions advocated by the automotive industry consists in the replacement of metallic parts by lighter systems made of polymer reinforced composites. Unfortunately, the numerical simulations set to evaluate the vibratory and acoustic performances of systems made of this kind of materials are often not sufficiently effective and robust so that convincing test/simulation correlations are rarely met. Indeed, for polymer-based materials, numerous parameters affect the vibroacoustic behavior. On the one hand, it is well known that the viscoelastic properties (Storage -Young- and dissipative moduli) of polymers depend on the temperature, loading frequency and sometimes the humidity content.
Technical Paper

Investigation of Gravel Noise Mechanisms and Impact Noise Transfer

2007-05-15
2007-01-2274
Impact noise, inside a car, due to tire-launched gravel on the road can lead to loss of quality perception. Gravel noise is mainly caused by small-sized particles which are too small to be seen on the road by the driver. The investigation focuses on the identification of the mechanisms of excitation and transfer. The spatial distribution of the particles flying from a tire is determined, as well as the probable impact locations on the vehicle body-panels. Finally the relative noise contributions of the body-panels are estimated by adding the panel-to-ear transfer functions. This form of Transfer-Path-Analysis allows vehicle optimization and target setting on the level of the tires, exterior panel treatment and isolation.
Technical Paper

Maximum Electrical Energy Availability With Reasonable Components

2000-11-01
2000-01-C071
The electric power required in automotive systems is quickly reaching a level that significantly impacts costs and fuel consumption. This drives the need to reconsider an electric energy management function. Fast evolving factors such as increasing power usage, and stricter engine management and reliability requirements necessitate a global vehicle approach to energy management. Innovations such as new powernet concepts (42 volt or dual voltage systems), new component technologies (high-performance energy storage, high efficiency and controllable generators), and global electronic and software architecture concepts will enable this new energy management concept. This paper describes key issues to maximize energy availability with reasonable components.
Technical Paper

OSEKtime: A Dependable Real-Time Fault-Tolerant Operating System and Communication Layer as an Enabling Technology for By-Wire Applications

2000-03-06
2000-01-1051
The new generation of drive-by-wire systems currently under development has demanding requirements on the electronic architecture. Functions such as brake-by-wire or steer-by-wire require continued operation even in the presence of component failures. The electronic architecture must therefore provide fault-tolerance and real-time response. This in turn requires the operating system and the communication layer to be predictable, dependable and composable. It is well known that this properties are best supported by a time-triggered approach. A consortium consisting of German and French car manufacturers and suppliers, which aims at becoming a working group within the OSEK/VDX initiative, the OSEKtime consortium, is currently defining a specification for a time-triggered operating system and a fault-tolerant communication layer.1 The operating system and the communication layer are based on applicable interfaces of the OSEK/VDX standard.
Technical Paper

Polymorphic Modeling Applied to Vehicle Thermal Management

2000-03-06
2000-01-0293
The modeling of thermal phenomena in transient state in a vehicle, typically the studies of heat exchanges in the engine or the heat exchange in the exhaust line leads to the use of nodal methods or lumped parameters in systems approach. This lumped parameters vision has led to important formalization studies these past years leading to two important concepts: the multiport concept of which bond-graphs constitute the theoretical framework, and the polymorphic modeling concept leading to the definition of a minimum of basic elements allowing to build a maximum of situations. This article proposes to demonstrate how these concepts have been used to bring about the development of a library of basic elements. Its application is demonstrated by the modeling of the different modules composing the engine (lubrication, cooling, exhaust and metal masses).
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
X