Refine Your Search

Topic

Search Results

Technical Paper

2,000,000 Miles of Fluid Evaluation in City Bus Automatic Transmissions

1967-02-01
670185
In certain types of city bus service some automatic transmission fluids can fail in less than 10,000 miles. In order to provide satisfactory transmission performance for longer mileage, improved fluids are required. An investigation was undertaken to obtain improved fluids. Fifteen different fluid formulations were evaluated in 30 city buses operated in normal service for more than 2,000,000 miles. It was determined that fluids fail because of frictional deterioration and oxidation. Based on these evaluations, only two fluids were found to be satisfactory for more than 40,000 miles; one additional fluid was satisfactory for more than 30,000 miles. The remaining 12 fluids failed in less than 20,000 miles.
Technical Paper

A Rotary Engine Test to Evaluate Lubricants for Control of Rotor Deposits

1974-02-01
740159
During development of the General Motors rotary engine, the lubricant was recognized as important to its success because certain lubricants produced deposits which tended to stick both side and apex seals. Consequently, it was decided to develop a rotary engine-dynamometer test, using a Mazda engine, which could be used for lubricant evaluation. In an investigation using an SE engine oil with which there was rotary engine experience, engine operating variables and engine modifications were studied until the greatest amount of deposits were obtained in 100 h of testing. The most significant engine modifications were: omission of inner side seals, plugging of half the rotor bearing holes, pinning of oil seals, grinding of end and intermediate housings, and using a separate oil reservoir for the metering pump. Using this 100 h test procedure, three engine oils and five automatic transmission fluids were evaluated.
Technical Paper

A Study of Responses and Tolerances of the Neck

1971-02-01
710856
The principal objectives of this study were first to obtain experimental curves of angulation versus moment of resistance of the human neck in hyperextension and lateral flexion, and second to determine angular limits short of significant injury observable in the unembalmed subjects employed in the study. The first of the tests were of the “static” type with load applied over a period of approximately 1s. To determine the applicability of the data to dynamic conditions, tests were also made of the dissected neck at angulation velocities comparable with those of typical accidental injury. Overall resisting moment and injury threshold were similar under the dynamic loading, but somewhat greater moment of resistance was noted during the (earlier) portion of the loading cycle when angular velocity was greatest.
Technical Paper

Automobile Radar Signature Studies

1975-02-01
750088
One of the prime requisites for automobile radar systems is obstacle hazard evaluation, the extent needed being dependent upon the particular system application. Much of the information necessary for a radar system to assess the degree of hazard of a target must come from characteristics which can be measured by the radar itself. While the hazard evaluation capacity has not yet been developed for automobile radar systems, research to provide this capability is in progress. Continuous wave (CW) scattering measurements have been made in a manner which is consistent with automobile radar operation. Various aspects of simple targets and of an automobile were measured in a microwave anechoic chamber. Both horizontal and vertical linear polarizations were transmitted and their co-linear and cross polarizations received. These data have been used to confirm the existence of and to understand certain scattering mechanisms.
Technical Paper

Correlation of Physical Properties with Performance of Polyacrylate Radial Lip Seals at -30F

1973-02-01
730051
This paper evaluates the tendency of lip seals to fracture in a test apparatus in which dynamic runout is 0.010 in and the temperature is cycled between -30 and 0 F. Seals made of eight different polyacrylate polymers were soap-sulfur cured with various types and amounts of carbon black. Physical tests included room-temperature flexibility defined by Young's modulus at small strains, standard tensile tests at room temperature, flexibility at sub-zero temperatures determined by a Gehman test, and sub-zero starting torques of the seals. Primary determinant of successful fracture resistance is a low starting torque resulting from good low-temperature flexibility. The effect of adding graphite to some of these formulations is described and some current commercially available seals are evaluated.
Technical Paper

Designing to Resist Fatigue - Examples of Component Design

1962-01-01
620262
This paper illustrates by way of two practical examples, namely, transmission gears and crankshafts, how the automotive industry applies basic approaches and methods for achieving fatigue resistant design. Analytic, laboratory, and field studies necessary in the development of these components are briefly outlined.
Technical Paper

Development of Polymeric Materials for Humanlike Neck Simulations

1974-02-01
740993
Several polymeric materials were developed and evaluated for possible inclusion in the neck structure of state-of-the-art anthropomorphic dummies. These included three types of foam-polyvinylchloride, polyethylene, and polyurethane, and two flexible polymers-polyurethane and a polyvinylchloride chlorinated polyethylene blend (PVC-CPE). Two materials, the polyurethane elastomer and the PVC-CPE blend, were found to be satisfactory in their dynamic response. Because of the ease of casting, the polyurethane material will be used in the GMR 1 state-of-the-art dummy.
Technical Paper

Electromagnetic Interference and the Automobile

1973-02-01
730129
This paper defines the overall problem of electromotive interference (EMI) from an automotive viewpoint. First, the general conditions (coupling modes) that apply within the automobile are described, then the automobile as a source of interference is examined. Performance criteria for electromagnetic automobile radiation limits as defined by various organizations are compared. Methods of measuring EMI are discussed, then the authors examine the environment both inside and outside of the automobile. Finally, the paper presents detailed test results of automotive impedance studies.
Technical Paper

Engine Oil MS Test Sequences IIA and IIIA

1965-02-01
650867
Engine oil test Sequences IIA and IIIA have been developed to replace Sequences I, II, and III. These new sequences are designed to evaluate lubricants for use in current passenger car engines under severe (MS) service conditions. Lubricant performance is evaluated with respect to scuffing wear, rust, corrosion, deposits, and rumble. The Sequence IIA and IIIA test procedure involves major changes which affect the evaluation of engine rusting and provides improved correlation between test results and short-trip service. Average engine rust ratings correlate with service data within ±0.5 numbers. The new test also provides better repeatability and reproducibility in a significantly shorter schedule. The rust repeatability and reproducibility is less than ±0.2 and ±0.6 numbers, respectively. Test time has been reduced 52%.
Technical Paper

Hydrodynamic Sealing with Radial Lip Seals

1966-02-01
660379
Conventional radial lip oil seals can be made more effective by utilizing helical grooving beneath the contact lip surface. Miniature hydrodynamic pumps so formed aid the radial lip seal in containing the oil by generating fluid forces opposite in direction to the leakage flow forces. This seal-shaft combination has been termed the Hydroseal. Four factorial experiments were conducted to evaluate the effect of helix angle, groove depth, groove width, and number of grooves on sealing performance. The criterion used as a basis for selecting the optimum design were leakage, wear, hardening of the sealing surface, and pumping capacity. These data indicated that the best hydroseal design was one with three grooves, 0.0003 in. deep, 0.014 in. wide, having a helix angle of 45 deg.
Technical Paper

Impact Tolerance and Response of the Human Thorax

1971-02-01
710851
At the 1970 SAE International Automobile Safety Conference, the first experimental chest impact results from a new, continuing biomechanics research program were presented and compared with earlier studies performed elsewhere by one of the authors using a different technique. In this paper, additional work from the current program is documented. The general objective remains unchanged: To provide improved quantification of injury tolerance and thoracic mechanical response (force-time, deflection-time, and force-deflection relationships) for blunt sternal impact to the human cadaver. Fourteen additional unembalmed specimens of both sexes (ranging in age from 19-81 years, in weight from 117-180 lb, and in stature from 5 ft 1-1/2 in to 6 ft) have been exposed to midsternal, blunt impacts using a horizontal, elastic-cord propelled striker mass. Impact velocities were higher than those of the previous work, ranging from 14-32 mph.
Technical Paper

Impact Tolerance of the Skull and Face

1968-02-01
680785
Forces necessary for fracture under localized loading have been obtained experimentally for a number of regions of the head. Three of these, the frontal, temporoparietal, and zygomatic, have been studied in sufficient detail to establish that the tolerances are relatively independent of impulse duration, in contrast with the tolerance of the brain to closed-skull injury. Significantly lower average strength has been found for the female bone structure. Other regions reported upon more briefly are mandible, maxilla, and the laryngotracheal cartilages of the neck. Pressure distribution has been measured over the impact area, which has been 1 sq in. in these tests, and the relationship between applied force as measured and as predicted from a head accelerometer is examined.
Technical Paper

Mechanical Necks with Humanlike Responses

1972-02-01
720959
A viscoelastic neck structure that responds to impact environments in a manner similar to the human neck is described. The neck structure consists of four ball-jointed segments and one pin-connected “nodding” segment with viscoelastic resistive elements inserted between segments that provide bending resistance as well as the required energy dissipation. Primary emphasis was placed on developing appropriate flexion and extension responses with secondary emphasis placed on axial, lateral, and rotational characteristics. The methods used to design the resistance elements for the neck structure are discussed. Three variations of the resistive elements have been developed that meet the response characteristics based on the data of Mertz and Patrick. However, no single resistive element has satisfied the flexion and extension characteristics simultaneously, but such an element appears to be feasible.
Technical Paper

Mechanical Simulation of Human Thorax Under Impact

1973-02-01
730982
This paper summarizes an analysis, design, and test project in which a dummy chest structure was developed. The chest consisted of mechanical elements that had been characterized by computer simulations as giving responses to blunt frontal impacts necessary for biofidelity. An analysis of mechanical rib structures indicated that materials having a high ratio of yield stress to modulus of elasticity were required. Only metals having unusually high yield strengths, such as spring steels, qualified. A mechanical system was developed with steel ribs pivoted at each end as a primary spring. A secondary spring was a pair of commercially available die springs acting in parallel with the ribs after 25.4 mm (1.00 in) deflection. A fluid damper was developed to provide the damping. The chest structure was tested under conditions modified from those used by Kroell. The modifications were holding the spine rigidly and reducing the impact masses.
Technical Paper

Projected Lubricant Requirements of Engines Operating with Lead-Free Gasoline

1971-02-01
710585
Future low emissions engines will burn unleaded gasoline. Compared with engines of 1970, future engines will have lower concentrations of NOx in the blowby gases, and lower blowby flow-rates; however, oil temperatures will probably be unchanged. The consequences of these conditions for engines using high quality (SE) oils at current drain intervals are: virtual elimination of rust, reduction of sludge, no effect on wear and oil thickening, and possible worsening of varnish. Therefore, extension of the drain interval with SE engine oils in the future may be possible, but final decisions will depend on the findings of research in the areas of engine wear and varnish, and oil thickening.
Technical Paper

Real-Time Measurement of Camshaft Wear in an Automotive Engine - a Radiometric Method

1990-10-01
902085
A radiometric method has been developed for the determination of camshaft wear during engine operation. After a radioactive tracer is induced at the tips of one or more cam lobes by the technique of surface layer activation, calibration procedure are performed to determine the amount of radioactive material remaining versus the depth worn. The decrease in γ-ray intensity measured external to the engine is then directly related to cam lobe wear. By incorporating a high-resolution detector and an internal radioactive standard,measurement accuracy better than ±0.2 μm at 95% confidence has been achieved. Without the requirement of engine disassembly, this method has provided unique measurements of break-in wear and wear as a function of operating conditions. Because this approach requires only low levels of radiation, it has significant potential applications in wear control.
Technical Paper

The Highway Safety Research Institute Dummy Compared with General Motors Biofidelity Recommendations and the Hybrid II Dummy

1974-02-01
740588
Two Highway Safety Research Institute (HSRI) dummies were tested and evaluated. Based on the analysis given, the HSI dummy should not be used for vehicle qualification testing. However, many of its components offer viable alternatives for future dummy development. The dummy was found to have inadequate biomechanical fidelity in the head, neck, and chest, although its characteristics were very promising and, as a whole, biomechanically superior to the Hybrid II. Its repeatability and reproducibility in dynamic component tests were better than the Hybrid II dummy. In particular, the HSRI friction joints were outstanding in repeatability and had a significant advantage in usability in that they do not require resetting between tests. In three-point harness and ACRS systems tests, the values of injury criteria produced by the HSRI dummy were generally lower than those obtained with the Hybrid II, especially the femur loads in the ACRS tests.
Technical Paper

Thoracic Tolerance to Whole-Body Deceleration

1971-02-01
710852
A professional high diver, instrumented with accelerometers, performed sixteen dives from heights between 27-57 ft. For each dive, he executed a 3/4 turn and landed supine on a 3-ft deep mattress which consisted of pieces of low-density urethane foam encased in a nylon cover. Using FM telemetry, sagittal plane decelerations were recorded for a point either on the sternum or the forehead. Impact velocities and corresponding stopping distances for the thorax and the head were calculated from high-speed movies of the dives. For a 57-ft dive, the impact velocity of the thorax was 41 mph with a corresponding stopping distance of 34.6 in. The peak resultant deceleration of the thorax was 49.2 g with a pulse duration of 100 ms. The maximum rate of change of the deceleration of the thorax was 5900 g/s. No discomfort was experienced as a result of this impact. The maximum forehead deceleration occurred during a 47.0-ft drop and exceeded 56 g with a Gadd Severity Index greater than 465.
Technical Paper

Tolerance and Properties of Superficial Soft Tissues In Situ

1970-02-01
700910
Utilizing unembalmed cadaver test subjects, a series of tests was carried out to characterize quantitatively the resistance of the skin, the soft underlying tissue of the scalp, and certain other typical areas of the body to impact loading. The impacts were delivered by the use of an instrumented free-fall device similar to that previously employed for facial bone fracture experiments. In one group of tests, metal and glass edges were affixed to the impacting device to produce localized trauma under conditions which were standardized with respect to variables affecting the degree of the injury. In the second group of experiments, specimens of skin, together with underlying tissue of uniform thickness, were subjected to compressive impact between the parallel surfaces of the impacting weight and a heavy metal platen. From these latter experiments the force-time histories, coefficient of restitution, and hysteresis loops of load versus deflection were obtained for the specimens.
Technical Paper

Use of a Weighted-Impulse Criterion for Estimating Injury Hazard

1966-02-01
660793
This paper describes the usage of an exponential weighting factor for appraising deceleration or force impulses registered on dummies or impacting hammers in safety testing. The proposed impulse-integration procedure, it is shown, takes into account in a more rational way, and in better conformity with published injury tolerance data, the relative importance of time and intensity of the pulse than do the “peak g” or impulse-area criteria. Use of the new Severity Index for assessment of head impact pulses is illustrated. It is shown to be of special value in comparing the relative severity of pulses which differ markedly in shape (because of structural differences in the component being struck) and it is pointed out that without a weighting factor of this nature, laboratory impact tests can yield incorrect ranking of the relative safety merit of alternative designs. Automated methods for quick calculation of the Severity Index are possible.
X