Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

A Case Study of the Economic Feasibility of a Demand-Responsive Transportation System

1972-02-01
720219
This paper presents an analysis of the economic feasibility of a demand-responsive transportation system employing driver-operated vehicles on existing street networks. The system is designed to meet the general public transportation needs of a suburban community. The analysis follows traditional economic theory in developing demand and supply curves for the transportation service as a consumer good, followed by an investigation of the equilibrium between demand and supply under various market conditions. Cost models specifically applicable to a transportation service with demand-responsive attributes are formulated to calculate the system supply functions, and an attitudinal survey is employed to generate estimates of demand in the case study community. The demand and supply equilibrium situations are investigated with respect to funding alternatives and sensitivity to changes in supply and demand variables.
Technical Paper

An Aerodynamic Test Facility for Scale-Model Automobiles

1973-02-01
730238
A facility for the aerodynamic testing of scale model vehicles has been developed. Suitable test section geometry, ground plane simulation, model setup technique, flow quality, and aerodynamic force and moment measurement capability are provided for automobile models of 1/4 to 3/8 scale. The maximum velocity of 160 mph enables 3/8 scale, 120 in wheelbase vehicles to be tested at Reynolds numbers approaching 5 × 106, based on wheelbase. A 3/8 scale model in a 160 mph airstream is dynamically similar to full-scale tests at 60 mph. Details of the facility are described.
Technical Paper

Considerations in the Design and Development of Turbines for Automotive Gas Turbine Engines

1963-01-01
630115
The conflicts in the design of turbines for an automotive gas turbine engine are examined. Considerations of stress, efficiency, engine and vehicle acceleration requirements, and compatibility of the flow path are shown to impose a number of opposing requirements. The philosophies used to compromise the conflicts in two successive engine designs are presented. Following a discussion of turbine test facilities, test results are presented for a typical turbine.
Technical Paper

Correlation of Physical Properties with Performance of Polyacrylate Radial Lip Seals at -30F

1973-02-01
730051
This paper evaluates the tendency of lip seals to fracture in a test apparatus in which dynamic runout is 0.010 in and the temperature is cycled between -30 and 0 F. Seals made of eight different polyacrylate polymers were soap-sulfur cured with various types and amounts of carbon black. Physical tests included room-temperature flexibility defined by Young's modulus at small strains, standard tensile tests at room temperature, flexibility at sub-zero temperatures determined by a Gehman test, and sub-zero starting torques of the seals. Primary determinant of successful fracture resistance is a low starting torque resulting from good low-temperature flexibility. The effect of adding graphite to some of these formulations is described and some current commercially available seals are evaluated.
Technical Paper

Corrosion Resistance of Trim Materials

1963-01-01
630110
As the design of automobiles changed over the past seventy years, manufacturers have increased the usage of decorative trim to further enhance the beauty of styling concepts. As new trim materials were introduced and parts became more complicated in design, producers have continued their efforts to produce decorative trim parts which remain attractive during the service life of the automobile. The service performance of trim materials in several geographic locations, the use of accelerated tests to predict service performance, recent developments in improving the durability of plated parts, and requirements for producing quality exterior decorative trim are reviewed in this paper.
Technical Paper

DEVELOPING TRANSAXLE FLUID

1960-01-01
600069
EXTENSIVE TESTING by GM Research Laboratories has screened five promising transaxle fluids out of 32 mineral-oil-base fluids, 10 synthetic-base fluids, and numerous additive-base stock combination fluids. This paper discusses the findings of the testing and the continuing program on the five fluids. Transaxle fluids have a number of properties affecting performance, including: High-temperature viscosity. Low-temperature fluidity. Shear resistance. Friction properties. Oxidation resistance. Antifoam quality. Effect on seals. Fluid-clutch plate compatibility. Antiwear quality. Extreme-pressure quality. Antirust and anticorrosion qualities.*
Technical Paper

GMR Stirling Thermal Engine part of the Stirling engine story-1960 chapter

1960-01-01
600068
THIS PAPER discusses the Stirling thermal enging from four points of view: 1. The ideal, thermodynamic point of view, showing the inherent potentialities of the ideal Stirling cycle in comparison to the basic cycles of other engines. 2. The physical engine and its method of operation with respect to the ideal cycle and the limitations of practical mechanics. 3. Performance data from the first modern Stirling engines ever operated in the United States, evaluating the relationship between the new engine and other more familiar engines of similar sizes. This comparative discussion serves to demonstrate the advantages and disadvantages of the Stirling engine and to indicate its proper place in the 1960 family of prime movers. 4. A look backward into the century of history behind the modern engine pointing out significant milestones in the engine's development.
Technical Paper

General Motors' Steam-Powered Passenger Cars - Emissions, Fuel Economy and Performance

1970-02-01
700670
Two steam-powered passenger ears have been designed, built, and tested. The SE-101 is an intermediate sport coupe incorporating the comfort and convenience features of a modern passenger car and vehicle performance comparable to a low-powered automobile. The SE-124 is a very low-power intermediate sedan with manual start and semiautomatic control. The characteristics of these cars were evaluated relative to the operational requirements of current transportation needs, with particular emphasis on exhaust emissions. Start-up time, exhaust emissions, fuel economy, acceleration, and water consumption data are presented. Although any one of these characteristics may be improved at the expense of others, it does not appear that any compromise can satisfy all of the areas required by today's motorist.
Technical Paper

Measurement of Chipping of Automotive Finishes

1968-02-01
680046
Various laboratory methods for measuring chip resistance were compared and found to rate different finishes in different orders. A field survey showed that a gravelometer using gravel rather than other media correlated well with actual service results. The necessity of preparing chip resistance test panels which very closely duplicate the actual finish obtained on cars was shown. The nature of chipping has been studied and improved rating systems developed. Detailed drawings, test procedures, and rating systems for the SAE gravelometer have been proposed for publication.
Technical Paper

Mechanical Necks with Humanlike Responses

1972-02-01
720959
A viscoelastic neck structure that responds to impact environments in a manner similar to the human neck is described. The neck structure consists of four ball-jointed segments and one pin-connected “nodding” segment with viscoelastic resistive elements inserted between segments that provide bending resistance as well as the required energy dissipation. Primary emphasis was placed on developing appropriate flexion and extension responses with secondary emphasis placed on axial, lateral, and rotational characteristics. The methods used to design the resistance elements for the neck structure are discussed. Three variations of the resistive elements have been developed that meet the response characteristics based on the data of Mertz and Patrick. However, no single resistive element has satisfied the flexion and extension characteristics simultaneously, but such an element appears to be feasible.
Technical Paper

Numerically Controlled Milling for Making Experimental Turbomachinery

1967-02-01
670096
Utilization of numerically controlled milling has been found particularly attractive in producing, in limited quantities, the three-dimensional curved surfaces characteristic of turbomachinery. In experimental and developmental programs its use can result in decreased fabrication cost, reduced lead time, and improved dimensional accuracy. Following a review of the general classifications of numerically controlled milling machines available for manufacture of such parts, illustrations are given of some of the procedures and techniques employed in their use. A variety of parts made using numerical control serve as examples.
Technical Paper

Performance with Economy - The RamAire System

1967-02-01
670109
A novel method for the intermittent supercharging of an internal combustion engine in a vehicle is described. During full throttle operation, high pressure motivating air entrains ambient air and compresses it to an intermediate pressure in the diffuser of an air ejector. Flowing through the carburetor and into the engine, the supplemental air augments engine power, reducing vehicle acceleration time by as much as one-third. By allowing engine size to be reduced, better economy without loss of performance is possible. Typical vehicle installations are described and problem areas discussed.
Technical Paper

The Highway Safety Research Institute Dummy Compared with General Motors Biofidelity Recommendations and the Hybrid II Dummy

1974-02-01
740588
Two Highway Safety Research Institute (HSRI) dummies were tested and evaluated. Based on the analysis given, the HSI dummy should not be used for vehicle qualification testing. However, many of its components offer viable alternatives for future dummy development. The dummy was found to have inadequate biomechanical fidelity in the head, neck, and chest, although its characteristics were very promising and, as a whole, biomechanically superior to the Hybrid II. Its repeatability and reproducibility in dynamic component tests were better than the Hybrid II dummy. In particular, the HSRI friction joints were outstanding in repeatability and had a significant advantage in usability in that they do not require resetting between tests. In three-point harness and ACRS systems tests, the values of injury criteria produced by the HSRI dummy were generally lower than those obtained with the Hybrid II, especially the femur loads in the ACRS tests.
Technical Paper

The Turbine Interstage Diffuser

1971-02-01
710553
The incentive for use of an interstage diffuser in a free-shaft gas turbine engine is briefly examined and some pertinent published background data reviewed. Tests of two annular diffusers behind an upstream turbine show the deleterious effects of turbine exit flow nonuniformity on diffuser behavior. The flow acceleration provided by the area contraction of a power turbine nozzle located at the diffuser exit substantially improves the nature of the flow previously found to exist at the diffuser exit in the absence of the nozzle.
Technical Paper

Thoracic Impact: New Experimental Approaches Leading to Model Synthesis

1973-02-01
730981
The following work was done in support of a continuing program to better characterize the behavior of the human chest during blunt sternal impact. Previous work on this problem has focused on determining the force-time, deflection-time, and force-deflection response of embalmed and fresh cadavers to impact by a 15 cm (6 in) diameter striker of variable mass traveling at velocities of 22.5-51 km/h (14-32 mph) and striking the sternum at the level of the fourth intercostal space. Additional questions persist concerning whether the anterior and posterior regions of the chest behave as highly damped masses or oscillate after impact, the relationship between force delivered to the surface of the body and the acceleration of the underlying regions, and the influence of air compressed in the lung on thoracic mechanics.
Technical Paper

Thoracic Tolerance to Whole-Body Deceleration

1971-02-01
710852
A professional high diver, instrumented with accelerometers, performed sixteen dives from heights between 27-57 ft. For each dive, he executed a 3/4 turn and landed supine on a 3-ft deep mattress which consisted of pieces of low-density urethane foam encased in a nylon cover. Using FM telemetry, sagittal plane decelerations were recorded for a point either on the sternum or the forehead. Impact velocities and corresponding stopping distances for the thorax and the head were calculated from high-speed movies of the dives. For a 57-ft dive, the impact velocity of the thorax was 41 mph with a corresponding stopping distance of 34.6 in. The peak resultant deceleration of the thorax was 49.2 g with a pulse duration of 100 ms. The maximum rate of change of the deceleration of the thorax was 5900 g/s. No discomfort was experienced as a result of this impact. The maximum forehead deceleration occurred during a 47.0-ft drop and exceeded 56 g with a Gadd Severity Index greater than 465.
Technical Paper

Tolerance and Properties of Superficial Soft Tissues In Situ

1970-02-01
700910
Utilizing unembalmed cadaver test subjects, a series of tests was carried out to characterize quantitatively the resistance of the skin, the soft underlying tissue of the scalp, and certain other typical areas of the body to impact loading. The impacts were delivered by the use of an instrumented free-fall device similar to that previously employed for facial bone fracture experiments. In one group of tests, metal and glass edges were affixed to the impacting device to produce localized trauma under conditions which were standardized with respect to variables affecting the degree of the injury. In the second group of experiments, specimens of skin, together with underlying tissue of uniform thickness, were subjected to compressive impact between the parallel surfaces of the impacting weight and a heavy metal platen. From these latter experiments the force-time histories, coefficient of restitution, and hysteresis loops of load versus deflection were obtained for the specimens.
Technical Paper

Using Interactive Graphics for the Preparation and Management of Finite Element Data

1974-02-01
740344
Interactive graphics is an aid which eliminates the data management problems that arise when manually preparing finite element models. Line and surface data representations of sheet metal automotive stampings are displayed on a cathode ray tube (CRT), and these data are then used for building finite element models. Elements are built by creating node points with the light pen or by using automatic mesh generating techniques. By using the interactive capability, the user immediately sees the results of his modeling decisions and can make changes in his model as a result of viewing his work. The interactive graphics system allows the user to define his elements, load cases, boundary conditions, and freedom sets without worrying about the grid point or element numbers. All information is communicated through the use of either the light pen or the keyboard. As information is supplied about the model, it is stored in a data base for review and possible change.
Technical Paper

Vehicle Handling Response to Aerodynamic Inputs

1964-01-01
640001
The equations of lateral motion response for four wheeled vehicles are developed for external disturbance inputs. Experimental data is obtained through use of a laterally directed hydrogen peroxide rocket motor mounted on a station wagon. The use of a rocket motor provides accurate and flexible control of location and magnitude of the input disturbance. Response data taken from these tests are compared with the responses from a computer model utilizing the disturbance equations. These results are applied to illustrate the effects of wind disturbance on vehicle handling.
X