Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2D Residual Gas Visualization in an Optical Direct Injection Spark Ignition Engine with IR Laser Absorption

2015-04-14
2015-01-1648
The spatial distribution of internal exhaust gas recirculation (EGR) is evaluated in an optically accessible direct injection spark ignition engine using near infrared laser absorption to visualize the distribution of the H2O molecule. The obtained overall internal exhaust gas recirculation compares well to gas-exchange cycle calculations and the spatial distributions are consistent with those measured with inverse LIF. The experimental procedures described in this report are designed to be simple and rapidly implemented without the need to resort to unusual optical components. The necessary spectral data of the selected absorption line is obtained from the HITEMP database and is validated with prior experiments carried out in a reference cell. Laser speckle in the images is effectively reduced using a ballistic diffuser.
Technical Paper

A New Approach for Characterization of Fuel Property Influence on Spray Formation in Diesel Engines

2010-10-25
2010-01-2249
Environmental and economical reasons have led to an increased interest in the usage of alternative fuels for combustion engines. To clarify the influence of these so-called future fuels on engine performance and emissions it is mandatory to understand their effect on spray formation. Usually this is done by performing various spray experiments with potential future fuels which are available for research purposes today. Due to the multitude of possible future fuels and therefore the uncertainty of their properties and their influence on spray formation a more general approach was chosen in the present study. The possible range of physical properties of future fuels for diesel engines was identified and more than twenty different fluids with representative properties, mostly one-component chemicals, were chosen by means of design of experiment (DoE).
Technical Paper

A New Approach to Assess the Accuracy of Service Timing Devices for Injection Pumps of Diesel Engines

1999-03-01
1999-01-0823
The correct timing of the diesel injection pump on engine is of major importance for all functions of the engine and for its exhaust emissions, during production pass off as well as in the field. Within the diesel service workshops a variety of devices exist to test the timing of the injection pump on engine. Most of them operate by clamp-on transducer being fitted to the injection pipe. A large uncertainty exists concerning the accuracy of such timing systems. Most diesel engine manufacturers do not have confidence in the timing devices capability and, therefore, do not recommend their usage. A working group within the International Organization for Standardization (ISO) adopted a method for the validation of these measurement systems, which usually is used to judge the capability of measurement gauges for industrial production processes.
Technical Paper

A New Combustion Pressure Sensor for Advanced Engine Management

1994-03-01
940379
A new combustion pressure sensor (CPS) for advanced engine management is presented, which is designed to carry out the functions: misfire detection, knock control, ignition control, camshaft phase detection and engine roughness control. For small size and high accuracy at a reasonable cost the piezoresistive effect, which is realized within an integrated circuit device and delivers low impedance output signals, has been chosen. Due to the optimized sensor housing, membrane and force transfer design, the sensor shows little offset drift when affected by flame front and environmental thermal stress. This paper describes the CPS and its performance in comparison with a well-known highly accurate reference sensor.
Technical Paper

A New Datadriven Approach to Modeling the Combustion of a Diesel Engine in HCCI Mode

2009-04-20
2009-01-0128
The contribution presents a new data driven modeling approach for diesel HCCI combustion. Input parameters of the combustion model are external actuating variables as for example the start of injection. The model incorporates experimental data of the engine in HCCI mode, in the standard diesel mode and in the transition region between both modes. New disclosed dependencies between characteristic values of the cylinder pressure and the fuel burn rate are used to linearize the combustion model for a given operating point. In this paper the validation of the combustion model is discussed based on dynamic measuring data of the urban part of the NEDC. Finally, the combustion model is integrated in a zero-dimensional diesel engine model.
Technical Paper

A New MOTRONIC System with 16 Bit Micro Controller

1989-08-01
891648
The functionality of engine management systems has grown rapidly over the last few years. The paper presents a new Motronic concept, the engine management control M3. The Motronic family M3 is a modular design destined to control engines with up to eight cylinders individually. The main features of this system and the ECU's concept are discussed.
Technical Paper

A New Object-Oriented Diagnostic System Management for Powertrain Control Units with OBD

1998-02-23
980512
This paper describes the concept of the Diagnostic System Management DSM which introduces an improved object-oriented software architecture in order to meet the high performance and reliability requirements of automotive On-Board Diagnostic Systems (OBD). DSM handles standard tasks and offers services to integrate diagnostic and control functions. This architecture enables the flexible composition of system-independent, reusable function implementations. Hence a distributed software development and software sharing are supported. The module DSM consists of a Fault Code Memory, an Inhibit Handler, a Validator and a Function Scheduler. Special care has been taken to achieve robustness against EMI effects. Bosch will use DSM in the future powertrain control systems.
Technical Paper

A Novel CFD Approach for an Improved Prediction of Particulate Emissions in GDI Engines by Considering the Spray-Cooling on the Piston

2015-04-14
2015-01-0385
The emission of particulate matter from future GDI engines has to be optimized, to comply with more stringent emission standards such as EU6. Therefore, the mechanisms responsible for the formation of particles have to be analyzed in detail. The understanding of the in-cylinder processes, necessary for this purpose, can only be achieved by a complementary use of optically accessible single-cylinder engines as well as the numerical simulation. This however leads to great demands on the 3D flow simulation. In this paper the complete CFD approach, incorporating a detailed description of the entire underlying model chain is shown. Particularly the wall surface temperature and the temperature drop due to the interaction with liquid fuel spray were identified as important parameters influencing the spray-wall interaction and thus also the particulate emissions. Nevertheless, in conventional CFD models, the spray cooling cannot be captured because of an assumed constant wall temperature.
Journal Article

A Representative Testing Methodology for System Influence on Automotive Fuel Filtration

2013-04-08
2013-01-0891
Filtration of diesel and gasoline fuel in automotive applications is affected by many external and internal parameters, e.g. vibration, temperature, pressure, flow pulsation, and engine start-stop. Current test procedures for automotive fuel filters, proposed by most of the researchers and organizations including Society for Automotive Engineers (SAE) and International Organization for Standardization (ISO), do not apply the previously mentioned real-world-conditions. These operating conditions, which are typical for an automotive fueling system, have a significant effect on fuel filtration and need to be considered for the accurate assessment of the filter. This requires the development of improved testing procedures that will simulate the operating conditions in a fuel system as encountered in the real world.
Technical Paper

A Thermodynamic Study on Boosted HCCI: Experimental Results

2011-04-12
2011-01-0905
Stricter emissions legislation and growing demands for lower fuel consumption require significant efforts to improve combustion efficiency while satisfying the emission quality demands. Controlled Homogeneous Charge Compression Ignition (HCCI) combined with boosted air systems on gasoline engines provides a particularly promising, yet challenging, approach. Naturally aspirated (NA) HCCI has already shown considerable potential in combustion efficiency gains. Nevertheless, since the volumetric efficiency is limited in the NA HCCI operation range due to the hot residuals required to ignite the mixture and slow down reaction kinetics, only part-load operation is feasible in this combustion mode. Considering the future gasoline engine market with growing potentials identified in downsized gasoline engines, it becomes necessary to investigate the synergies and challenges of controlled, boosted HCCI.
Journal Article

A Thermodynamic Study on Boosted HCCI: Motivation, Analysis and Potential

2010-04-12
2010-01-1082
Due to the increasingly stricter emission legislation and growing demands for lower fuel consumption, there have been significant efforts to improve combustion efficiency while satisfying the emission requirements. Homogeneous Charge Compression Ignition (HCCI) combined with turbo/supercharging on gasoline engines provides a particularly promising and, at the same time, a challenging approach. Naturally aspirated (n.a.) HCCI has already shown a considerable potential of about 14% in the New European Driving Cycle (NEDC) compared with a conventional 4-cylinder 2.0 liter gasoline Port Fuel Injection (PFI) engine without any advanced valve-train technology. The HCCI n.a. operation range is air breathing limited due to the hot residuals required for the self-ignition and to slow down reaction kinetics, and therefore is limited to a part-load operation area.
Technical Paper

ABS and ASR for Passenger Cars -Coals and Limits

1989-02-01
890834
Antilock Braking Systems (ABS) and Traction Control Systems (ASR) should ensure maximum stability and steerability even under extreme driving conditions. Since high performance systems additionally improve brake distance and traction within the given physical limits, every vehicle equipped with ABS and ASR offers considerably higher active safety. ABS was introduced into the market by the Robert Bosch GmbH more than ten years ago, and more than 3 million systems have been produced by the end of 1988. Volume production of ASR began in 1987. This paper describes several high-, medium-, and low performance concepts and compares them with regard to safety and performance. Although it seems to be nearly impossible to define a cost/benefit ratio between monetary values and safety, our purpose here is to identify further development strategies through the use of a decision matrix.
Technical Paper

ABS5 and ASR5: The New ABS/ASR Family to Optimize Directional Stability and Traction

1993-03-01
930505
In 1978, Bosch was the first supplier on the market to offer full-function antilock braking systems. In 1993, six years will have passed since Bosch delivered the first traction control system for passenger cars. In the meantime, a considerable amount of experience has been gained through ongoing development and testing. This experience enabled us to define the requirements for directional stability, optimum control strategy, maximum usage of the entire spectrum of drive torque intervention possibilities, and optimized hydraulics for automatic brake intervention. The result is Bosch ABS/ASR5, which in now being introduced to the market. This new ABS/ASR family is designed in modules, which offers high flexibility in function and assembly. Systems are available with traction improvement, or with optimized directional stability and traction. Each version is adapted to the needs of the vehicle drive layout, and adaptable to customer requirements.
Technical Paper

ASR - Traction Control - A Logical Extension of ABS

1987-02-01
870337
Control of a car is lost, or considerably reduced, whenever one or more of the wheels exceed the stability limit during braking or accelerating due to excessive brake or drive slip. The problem of ensuring optimum stability, steerability and brake distance of a car during hard braking is solved by means of the well-known Anti-lock Braking System (ABS). The task to guarantee stability, steerability and optimum traction during acceleration, particularly on asymmetrical road surfaces and during cornering maneuvers, is being performed by the traction control system (ASR). Several means to provide an optimum traction control are described, e. g the control of engine torque by influencing the throttle plate and/or the ignition and/or the fuel injection.
Technical Paper

ASR-Traction Control, State of the Art and Some Prospects

1990-02-01
900204
Closed loop vehicle control comprising of the driver, the vehicle and the environment is now achieved by the automatic wheel slip control combination of ABS and ASR. To improve directional control during acceleration, the Robert Bosch Corporation has introduced five ASR-Systems into series production. In one system, the electronic control unit works exclusively with the engine management system to assure directional control. In two other systems, brake intervention works in concert with throttle intervention. For this task, it was necessary to develop different highly sophisticated hydraulic units. The other systems improve traction by controlling limited slip differentials. The safety concept for all five systems includes two redundant micro controllers which crosscheck and compare input and output signals. A Traction Control System can be achieved through a number of torque intervention methods.
Technical Paper

AUTOSAR Gets on the Road - More and More

2012-04-16
2012-01-0014
AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide standard for automotive basic software in line with an architecture that eases exchange and transfer of application software components between platforms or companies. AUTOSAR provides the standardized architecture together with the specifications of the basics software along with the methodology for developing embedded control units for automotive applications. AUTOSAR matured over the last several years through intensive development, implementation and maintenance. Two main releases (R3.2 and R4.0) represent its current degree of maturity. AUTOSAR is driven by so called core partners: leading car manufacturers (BMW, Daimler, Ford, GM, PSA, Toyota, Volkswagen) together with the tier 1 suppliers Continental and Bosch. AUTOSAR in total has more than 150 companies (OEM, Tier X suppliers, SW and tool suppliers, and silicon suppliers) as members from all over the world.
Technical Paper

Adaptive Cruise Control System Aspects and Development Trends

1996-02-01
961010
This paper is based on the experiences with Adaptive Cruise Control (ACC) systems at BOSCH. Necessary components (especially range sensor, curve sensors, actuators and display) are described, roughly specified, and their respective strength and weaknesses are addressed. The system overview contains the basic structure, the main control strategy and the concept for driver-ACC interaction. Afterwards the principal as well as the current technical limits of ACC systems are discussed. The consequences on traffic flow, safety and driver behavior are emphasized. As an outlook, development trends for extended functionality are given for the next generation of driver assistance systems.
Journal Article

Advanced Combustion System Analyses on a 125cc Motorcycle Engine

2011-11-08
2011-32-0557
Environmental consciousness and tightening emissions legislation push the market share of electronic fuel injection within a dynamically growing world wide small engines market. Similar to automotive engines during late 1980's, this opens up opportunities for original equipment manufacturers (OEM) and suppliers to jointly advance small engines performance in terms of fuel economy, emissions, and drivability. In this context, advanced combustion system analyses from automotive engine testing have been applied to a typical production motorcycle small engine. The 125cc 4-stroke, 2-valve, air-cooled, single-cylinder engine with closed-loop lambda-controlled electronic port fuel injection was investigated in original series configuration on an engine dynamometer. The test cycle fuel consumption simulation provides reasonable best case fuel economy estimates based on stationary map fuel consumption measurements.
Technical Paper

Advanced Emission and Fuel Economy Concept Using Combined Injection of Gasoline and Hydrogen in SI-Engines

2004-03-08
2004-01-1270
In order to meet future requirements for emission reduction and fuel economy a variety of concepts are available for gasoline engines. In the recent past new pathways have been found using alternative fuels and fuel combinations to establish cost optimized solutions. The presented concept for a SI-engine consists of combined injection of gasoline and hydrogen. A hydrogen enriched gas mixture is being injected additionally to gasoline into the engine manifold. The gas composition represents the output of an onboard gasoline reformer. The simulations and measurements show substantial benefits to improve the combustion process resulting in reduced cold start and warm up emissions and optimized part load operation. The replacement of gasoline by hydrogen-rich gas during engine start leads to zero hydrocarbons in the exhaust gas.
Technical Paper

Advanced Engine Misfire Detection for SI-Engines

1997-02-24
970855
This paper presents a system concept for detecting combustion misfire. The relevant research grew out of the more stringent requirements for On-Board Diagnostic systems (OBDII) mandated by the California Air Resources Board (CARB), effective as of model year 1997 onward. The system concept is based on evaluation of variations in crankshaft speed. Processes using engine roughness are applied in non-critical operating areas and/or on engines with a small number of cylinders. The modulation process is used in more critical areas. Research was done using a 12-cylinder engine and indicated the potential to comply with the California Air Resources Board's regulations for the model year (MY) 1997 and later.
X