Refine Your Search

Topic

Search Results

Technical Paper

A Novel Vehicle-to-Vehicle Fast Charging Control System Utilizing Motor and Inverter in EV

2022-03-29
2022-01-0170
As electric vehicles become more widespread, such vehicles may be subject to “range anxiety” due to the risk of discharging during driving or the discharging when left unused for a long period. Accordingly, a vehicle equipped with a mobile charger that can provide a charge in an emergency. The vehicle with the mobile charger is usually composed of a large capacity battery, a power converter in a small truck. However, the large capacity battery and the power converter are disadvantageous in that they are large in size and expensive and should be produced as a special vehicle. In this paper, we propose a method to solve the problem using an internal EV system without requiring an additional power generation, battery and a charging-and-discharging device. The method is a novel Vehicle-to-Vehicle (V2V) fast charging control system utilizing motor and inverter in EV.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Technical Paper

A Study of Ride Analysis of Medium Trucks with Varying the Characteristics of Suspension Design Parameters

1997-11-17
973230
Ride quality of medium truck became a very important factor in the suspension design, due to the demand of more comfortable ride of passengers. This study describes how to determine and evaluate design parameters related to the chassis suspension system with time and frequency analysis. The spring stiffness and damping force of the chassis suspension system were obtained by observing the vertical acceleration PSD. The simulation was carried out on various road profiles, which was suggested by ISO. The pitching motion of the medium size truck was observed to improve the ride quality. A computer simulated truck model was constructed using DADS, a commercial dynamic analysis software, in order to simulate the truck motions. From the result of the sensitivity analysis of suspension parameters, it was concluded that the spring and the shock absorbers affect the pitching of the vehicle. In order to validate the computer simulated truck model, a physical prototype was constructed and tested.
Journal Article

A Study on How to Utilize Hilly Road Information in Equivalent Consumption Minimization Strategy of FCHEVs

2014-04-01
2014-01-1827
This paper presents an adaptation method of equivalent factor in equivalent consumption minimization strategy (ECMS) of fuel cell hybrid electric vehicle (FCHEV) using hilly road information. Instantaneous optimization approach such as ECMS is one of real-time controllers. Furthermore, it is widely accepted that ECMS achieves near-optimum results with the selection of the appropriate equivalent factor. However, a lack of hilly road information no longer guarantees near-optimum results as well as charge-sustaining of ECMS under hilly road conditions. In this paper, first, an optimal control problem is formulated to derive ECMS analytical solution based on simplified models. Then, we proposed updating method of equivalent factor based on sensitivity analysis. The proposed method tries to mimic the globally optimal equivalent factor trajectory extracted from dynamic programming solutions.
Technical Paper

Automatic Climate Control of the Recreation Vehicle with Dual HVAC System

2001-03-05
2001-01-0591
In this paper, we deal with the automatic climate control for Recreational Vehicle (RV). The HVAC system used for RV was composed of front side and rear side. And, the HVAC system of front side differed from that of rear side in the characteristic of HVAC system. This system was economically optimized for automatic control over 2 separated zones. The development procedure of automatic climate controller was as follows. The first stage was to derive control equation from characteristic analysis of HVAC system and the structural characteristic of vehicle interior. In the second stage, the software (S/W) was designed and programmed to operate microprocessor which calculated previously mentioned equation. Finally, the hardware (H/W) design and building were performed to operate the HVAC system with the calculation results from microprocessor. The control performance of this automatic climate control algorithm and system was evaluated by experimental method.
Technical Paper

Automatic steering control using CCD camera

2000-06-12
2000-05-0367
In this paper we present the vision system used by the autonomous intelligent vehicle to sense the surrounding environment. With the B/W CCD camera, the system is able to detect the lane marking and to localize the vehicle''s position in real time and, thanks to an electric DC motor mounted on the steering column, it can autonomously steer the vehicle. We tested the system by implementing on EF SONATA (Hyundai Motor Co.) in the test field of laboratory and verified that the steering control drove the vehicle as smoothly as a human being along both straight and curve roads with maximum 100 k/h.
Technical Paper

Available Power and Energy Prediction Using a Simplified Circuit Model of HEV Li-ion Battery

2010-04-12
2010-01-1074
Due to aging of a battery over lifetime, the rated power and nominal energy capacity will be reduced compared with the initial rated power and capacity. These result in influences on the vehicle driving performance and fuel economy. To monitor and diagnose the aging of the battery, in this paper, the method of predicting the available rated power and energy capacity of Li-ion battery under in-vehicle condition is proposed. Under constant power test, available power is calculated from the estimated parameters using recursive least square method. Further, available energy capacity is evaluated through SOH(cn) defined by the ratio of initial state-of-charge (SOC) variation to present SOC (\GdSOC ⁿ /ΔSOC ⁿ ) variation under arbitrary in-vehicle driving cycles. To verify the proposed method, experiments for aging Li-ion battery are performed in hybrid electric vehicle.
Technical Paper

Development of Accelerated Reliability Testing Method for Electric Vehicle Motor and Battery System

2014-04-01
2014-01-0748
Currently, the interest in accelerated reliability testing (ART) of electric vehicles parts has been increasing. In particular, an electric motor and battery are vital components of battery powered electric vehicles. The electric motor has two major roles, to discharge or charge battery when it is driven or braking. For analyzing the exact behavior mechanism of electric motor and predicting lithium-ion battery cell degradation, new accelerated reliability testing technology is required. This paper describes the results of research and development in new approach to reliability testing for electric vehicles. The methodology to measure a precise motor output torque of the rotating rotor using telemetry system was provided. The electric energy quantities as well as the used quantities of the electric power were also analyzed. The results of research and development in new approach to reliability testing for electric vehicles were systematized and reflected in development.
Technical Paper

Development of DC Motor Driven 3 Way Valve for FCEV

2013-03-25
2013-01-0127
Fuel cell vehicle is loaded with translating equipment, which converts chemical energy to electrical energy. The equipment has maximum power efficiency at a specific temperature when several operating conditions are met. To control the coolant temperature, the existing system uses a wax-type thermostat, which operates as the wax elements contracts and expands. However, there are several problems with the wax-type thermostat; it is impossible to measure real-time temperature and high pressure drop. To mitigate these problems, we developed a DC motor-driven 3-way valve that can control real-time temperature and low pressure drop. Application of the 3-way valve will improve fuel cell vehicle power and fuel efficiency.
Technical Paper

Development of Effective Bicycle Model for Wide Ranges of Vehicle Operations

2014-04-01
2014-01-0841
This paper proposes an effective nonlinear bicycle model including longitudinal, lateral, and yaw motions of a vehicle. This bicycle model uses a simplified piece-wise linear tire model and tire force tuning algorithm to produce closely matching vehicle trajectory compared to real vehicle for wide vehicle operation ranges. A simplified piece-wise tire model that well represents nonlinear tire forces was developed. The key parameters of this model can be chosen from measured tire forces. For the effects of dynamic load transfer due to sharp vehicle maneuvers, a tire force tuning algorithm that dynamically adjusts tire forces of the bicycle model based on measured vehicle lateral acceleration is proposed. Responses of the proposed bicycle model have been compared with commercial vehicle dynamics model (CarSim) through simulation in various vehicle maneuvers (ramp steer, sine-with-dwell).
Technical Paper

Development of Fuel Cell Hybrid Electric Vehicle Fueled by Methanol

2003-03-03
2003-01-0421
Hyundai has developed a Santa Fe fuel cell vehicle (FCV) in which methanol fuel processor is installed and integrated with PEM fuel cell system. Pure hydrogen is produced from the mixture of methanol and water by steam reforming followed by metal membrane purification and is then fed to fuel cell system to generate electrical energy. This system has the advantage of simplifying the integration of fuel cell subsystem and fuel processor subsystem. The operation of brassboard system has been carried out for performance evaluation and the development of fuel cell controller. And then the methanol reforming fuel cell system has been incorporated into electric drive train in the vehicle. AC induction motor is powered by the hybrid system using fuel cell and a nickel metal hydride battery as energy sources to improve the system efficiency and the acceleration response of the vehicle.
Technical Paper

Development of Two Oil Pumping System for Automatic Transmission

2014-04-01
2014-01-1766
The efforts to improve automatic transmission (AT) efficiency for vehicle fuel economy are constantly continuing. In an AT the oil pump is the largest power loss factor. Therefore the effect on fuel economy is very high. The AT oil pump system has structural contradictions (high pressure × high flow), and the efforts to improve these areas are concentrated. In this paper, a two oil pumping system was designed to improve the efficiency and performance of a 6 speed AT installed in a Hybrid Electric Vehicle (HEV) [1], and the improvement was confirmed by a prototype experiment. As a result of the experiment, two pumping system was shown to improve vehicle fuel economy while reducing noise and oil pressure vibration.
Technical Paper

Development of Vibration Suppression Control Strategy for Motor System of Eco-Friendly Vehicles

2014-04-01
2014-01-1874
Development of eco-friendly vehicles have risen in importance due to fossil fuel depletion and the strengthened globalized emission control regulatory requirements. A lot of automotive companies have already developed and launched various types of eco-friendly vehicles which include hybrid vehicles (HEVs) or electric vehicles (EVs) to reduce fuel consumption. To maximize fuel economy Hyundai-Kia Motor Company has introduced eco-friendly vehicles which have downsized or eliminated vibration damping components such as a torque converter. Comparing with Internal Combustion Engine(ICE) powered vehicles, one issue of the electric motor propulsion system with minimized vibration damping components is NVH (Noise, Vibration and Harshness). The NVH problem is caused by output torque fluctuation of the motor system, resulting in the degradation of ride comfort and drivability.
Technical Paper

Energy-Optimal Deceleration Planning System for Regenerative Braking of Electrified Vehicles with Connectivity and Automation

2020-04-14
2020-01-0582
This paper presents an energy-optimal deceleration planning system (EDPS) to maximize regenerative energy for electrified vehicles on deceleration events perceived by map and navigation information, machine vision and connected communication. The optimization range for EDPS is restricted within an upcoming deceleration event rather than the entire routes while in real time considering preceding vehicles. A practical force balance relationship based on an electrified powertrain is explicitly utilized for building a cost function of the associated optimal control problem. The optimal inputs are parameterized on each computation node from a set of available deceleration profiles resulting from a deceleration time model which are configured by real-world test drivings.
Technical Paper

Hyundai Santa Fe FCV Powered by Hydrogen Fuel Cell Power Plant Operating Near Ambient Pressure

2002-03-04
2002-01-0093
Hyundai Motor Company has developed hydrogen fuel cell vehicles (FCV) based on its SUV, Santa Fe. As the hydrogen fuel cell power plant runs at near ambient pressure, parasitic loss due to its operation is fully minimized and the noise level of the air supply subsystem is extremely low. The Santa Fe FCV has been built to feature roomy passenger space and cargo capacity identical to that of a standard, gasoline-powered Santa Fe, because of its compact fuel cell power plant. In addition, lightweight aluminum body-components help to keep a power-to-weight ratio similar to that of a conventional SUV. Hyundai Motor Company, as a full member of California Fuel Cell Partnership, is now operating the Santa Fe FCV's on real roads in California. In this paper, the configuration and performance test results of the Santa Fe FCV will be described.
Technical Paper

Learning Slip Control of an Engine Clutch in a Parallel Hybrid Electric Vehicle for Linear Vehicle Launch

2014-04-01
2014-01-1745
This work studied the control technique for the engine clutch engagement at launch for the TMED parallel HEV for the improved drivability and dynamic performance. Analysis are done on the speed synchronization of the clutch plates, the speed control using the starter motor (ISG), and the fluid pressure control for the clutch. Possible external factors such as changes in the friction coefficient of transmission fluid, temperature variation, auxiliary power and pressure losses are identified and their effects on the targeted dynamic performance are examined. The targeted system performance was achieved with a learning control technique using fluid pressure as the only control input. This involves the compensation for the effect of external factors on the fluid pressure profile and this effect is memorized for the subsequent slip-launch application.
Technical Paper

Model Based Optimization of Supervisory Control Parameters for Hybrid Electric Vehicles

2008-04-14
2008-01-1453
Supervisory control strategy of a hybrid electric vehicle (HEV) provides target powers and operating points of an internal combustion engine and an electric motor. To promise efficient driving of the HEV, it is needed to find the proper values of control parameters which are used in the strategy. However, it is very difficult to find the optimal values of the parameters by doing experimental tests, since there are plural parameters which have dependent relationship between each other. Furthermore variation of the test results makes it difficult to extract the effect of a specific parameter change. In this study, a model based parameter optimization method is introduced. A vehicle simulation model having the most of dynamics related to fuel consumption was developed and validated with various experimental data from real vehicles. And then, the supervisory control logic including the control parameters was connected to the vehicle model.
Technical Paper

Optimal Control of Integrated Starter and Generator for Maximum Energy Recovery during Engine Stop Transition in Hybrid Electric Vehicles

2016-04-05
2016-01-1244
An integrated starter and generator (ISG) is a type of electric machine which is mechanically connected to an internal combustion engine (ICE). The ISG is intended to conduct important roles in the hybrid electric vehicle (HEV) such as engine start and stop. Since the HEV has frequent electric vehicle (EV)/HEV mode transition, rapid engine cranking and vibration-free engine stop controls are necessary. In the case of the engine stop, the ISG provides the negative torque output to the ICE which can rapidly escape from its resonance speed. However, the ISG torque is determined by engineering intuition, the amount of energy recovery is hardly considered. Dynamic programming (DP) is an effective solution to find optimal ISG control strategy to maximize energy recovery during engine stop transition. Even though DP is an offline algorithm, the result can be used as a reference to evaluate and improve an existing on-line algorithm.
Technical Paper

Real-Time Powertrain Control Strategy for Series-Parallel Hybrid Electric Vehicles

2007-08-05
2007-01-3472
The series-parallel hybrid electric vehicle(HEV), which employs a planetary gear set to combine one internal combustion engine(ICE) and two electric motors(EMs), can take advantages of both series and parallel hybrid system. The efficient powertrain operating point of the system can be obtained by the instantaneous optimization of equivalent fuel consumption. However, heavy computational requirements and variable constraints of the optimization process make it difficult to build real-time control strategy. To overcome the difficulty, this study suggests the control strategy which divides the optimization process into 2 stages. In the first stage, a target of charge/discharge power is determined based on equivalent fuel consumption, then in the second stage, an engine operating point is determined taking power transfer efficiency into account.
Journal Article

Recent Advances in the Development of Hyundai · Kia's Fuel Cell Electric Vehicles

2010-04-12
2010-01-1089
Wide attention to fuel cell electric vehicles (FCEVs) comes from two huge issues currently the world is facing with: the concern of the petroleum reserves depletion due to consequent oil dependence and the earth global warming due in some extent to vehicle emissions. In this background, Hyundai, along with its sister company Kia, has been building the FCEVs and operating their test fleet with several tens of units at home and abroad. Since 2004, 32 passenger vehicles have been offered for the Department of Energy's controlled hydrogen fleet and infrastructure demonstration and validation project in the U.S. In the meantime, from 2006, 30 passenger vehicles as well as four buses, featuring the in-house developed fuel cell stack and its associated components, are currently under the domestic operation for the FCEV learning demonstration led by the Ministry of Knowledge and Economy.
X