Refine Your Search

Topic

Author

Search Results

Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

A Review of Current Understanding of the Underlying Physics Governing the Interaction, Ignition and Combustion Dynamics of Multiple-Injections in Diesel Engines

2022-03-29
2022-01-0445
This work is a comprehensive technical review of existing literature and a synthesis of current understanding of the governing physics behind the interaction of multiple fuel injections, ignition, and combustion behavior of multiple-injections in diesel engines. Multiple-injection is a widely adopted operating strategy applied in modern compression-ignition engines, which involves various combinations of small pre-injections and post-injections of fuel before and after the main injection and splitting the main injection into multiple smaller injections. This strategy has been conclusively shown to improve fuel economy in diesel engines while achieving simultaneous NOX, soot, and combustion noise reduction - in addition to a reduction in the emissions of unburned hydrocarbons (UHC) and CO by preventing fuel wetting and flame quenching at the piston wall.
Technical Paper

An Examination of Sensing Skins with Tailored Conductivity Distributions for Enhanced 2-D Surface Temperature Measurements Using Electrical Impedance Tomography (EIT)

2023-10-31
2023-01-1680
For 2D surface temperature monitoring applications, a variant of Electrical Impedance Tomography (EIT) was evaluated computationally in this study. Literature examples of poor sensor performance in the center of the 2D domains away from the side electrodes motivated these efforts which seek to overcome some of the previously noted shortcomings. In particular, the use of ‘sensing skins’ with novel tailored baseline conductivities was examined using the EIDORS package for EIT. It was found that the best approach for detecting a temperature hot spot depends on several factors such as the current injection (stimulation) patterns, the measurement patterns, and the reconstruction algorithms. For well-performing combinations of these factors, customized baseline conductivities were assessed and compared to the baseline uniform conductivity.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Journal Article

An Investigation into the Effects of Fuel Properties and Engine Load on UHC and CO Emissions from a Light-Duty Optical Diesel Engine Operating in a Partially Premixed Combustion Regime

2010-05-05
2010-01-1470
The behavior of the engine-out UHC and CO emissions from a light-duty diesel optical engine operating at two PPCI conditions was investigated for fifteen different fuels, including diesel fuels, biofuel blends, n-heptane-iso-octane mixtures, and n-cetane-HMN mixtures. The two highly dilute (9-10% O₂) early direct injection PPCI conditions included a low speed (1500 RPM) and load (3.0 bar IMEP) case~where the UHC and CO have been found to stem from overly-lean fuel-air mixtures~and a condition with a relatively higher speed (2000 RPM) and load (6.0 bar IMEP)~where globally richer mixtures may lead to different sources of UHC and CO. The main objectives of this work were to explore the general behavior of the UHC and CO emissions from early-injection PPCI combustion and to gain an understanding of how fuel properties and engine load affect the engine-out emissions.
Journal Article

An Optical Study of Mixture Preparation in a Hydrogen-fueled Engine with Direct Injection Using Different Nozzle Designs

2009-11-02
2009-01-2682
Mixture formation in an optically accessible hydrogen-fueled engine was investigated using Planar Laser-Induced Fluorescence (PLIF) of acetone as a fuel tracer. The engine was motored and fueled by direct high-pressure injection. This paper presents the evolution of the spatial distribution of the ensemble-mean equivalence ratio for six different combinations of nozzle design and injector geometry, each for three different injection timings after intake-valve closure. Asymmetric single-hole and 5-hole nozzles as well as symmetric 6-hole and 13-hole nozzles were used. For early injection, the low in-cylinder pressure and density allow the jet to preserve its momentum long enough to undergo extensive jet-wall and (for multi-hole nozzles) jet-jet interaction, but the final mixture is fairly homogeneous. Intermediately timed injection yields inhomogeneous mixtures with surprisingly similar features observed for all multi-hole injectors.
Technical Paper

Assessment of RNG Turbulence Modeling and the Development of a Generalized RNG Closure Model

2011-04-12
2011-01-0829
RNG k-ε closure turbulence dissipation equations are evaluated employing the CFD code KIVA-3V Release 2. The numerical evaluations start by considering simple jet flows, including incompressible air jets and compressible helium jets. The results show that the RNG closure turbulence model predicts lower jet tip penetration than the "standard" k-ε model, as well as being lower than experimental data. The reason is found to be that the turbulence kinetic energy is dissipated too slowly in the downstream region near the jet nozzle exit. In this case, the over-predicted R term in RNG model becomes a sink of dissipation in the ε-equation. As a second step, the RNG turbulence closure dissipation models are further tested in complex engine flows to compare against the measured evolution of turbulence kinetic energy, and an estimate of its dissipation rate, during both the compression and expansion processes.
Journal Article

Combined Effects of Multi-Pulse Transient Plasma Ignition and Intake Heating on Lean Limits of Well-Mixed E85 DISI Engine Operation

2014-10-13
2014-01-2615
Well-mixed lean SI engine operation can provide improvements of the fuel economy relative to that of traditional well-mixed stoichiometric SI operation. This work examines the use of two methods for improving the stability of lean operation, namely multi-pulse transient plasma ignition and intake air preheating. These two methods are compared to standard SI operation using a conventional high-energy inductive ignition system without intake air preheating. E85 is the fuel chosen for this study. The multi-pulse transient plasma ignition system utilizes custom electronics to generate 10 kHz bursts of 10 ultra-short (12ns), high-amplitude pulses (200 A). These pulses were applied to a custom spark plug with a semi-open ignition cavity. High-speed imaging reveals that ignition in this cavity generates a turbulent jet-like early flame spread that speeds up the transition from ignition to the main combustion event.
Technical Paper

DOE's Effort to Reduce Truck Aerodynamic Drag Through Joint Experiments and Computations

2005-11-01
2005-01-3511
At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the intelligent design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments related to drag reduction devices, and offer a brief discussion of our future direction.
Technical Paper

Detection Reliability Study for Interlayer Cracks

1998-11-09
983125
The Federal Aviation Administration Airworthiness Assurance Nondestructive Inspection Validation Center (FAA-AANC) is currently conducting a detection reliability study pertaining to the detection of cracks in multi-layered aluminum sheets. This paper describes the design, production and characterization of test specimens that are currently being used to conduct third layer Probability of Detection (PoD) experiments. Pertinent aspects of the lap splice joints for Boeing 737 aircraft, Line Numbers 292 - 2565 are included in the test specimens. A preliminary analysis of the data indicates that for some inspectors, traditional measures of performance - in particular PoD curves based on maximum likelihood fit to two-parameter lognormal curve - may be misleading.
Technical Paper

Development of the HyStEP Device

2016-04-05
2016-01-1190
With the introduction of more fuel cell electric vehicles (FCEVs) on U.S. roadways, especially in California, the need for available hydrogen refueling stations is growing. While funding from the California Energy Commission is helping to solve this problem, solutions need to be developed and implemented to help reduce the time to commission a hydrogen station. The current practice of hydrogen station acceptance can take months because each vehicle manufacturer conducts their own testing and evaluation. This process is not practical or sufficient to support the timely development of a hydrogen fueling station network. To address this issue, as part of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Sandia National Laboratories and the National Renewable Energy Laboratory along with a team of stakeholders and contractor Powertech Labs has developed the Hydrogen Station Equipment Performance (HyStEP) Device.
Technical Paper

Diesel-Spray Ignition and Premixed-Burn Behavior

2000-03-06
2000-01-0940
The temporal and spatial evolution of the ignition and premixed-burn phases of a direct-injection (DI) diesel spray were investigated under quiescent conditions. The diagnostics used included temporally resolved measurements of natural light emission and pressure, and spatially resolved images of natural light emission. Temporally resolved natural light emission measurements were made with a photo-multiplier tube and a photodiode, while the images were acquired with an intensified CCD camera. The experiments were conducted in an optically accessible, constant-volume combustion vessel over a range of ambient gas temperatures and densities: 800-1100 K and 7.3-45.0 kg/m3. The fuel used was a ternary blend of single-component fuels representative of diesel fuel with a cetane number of 45. The fuel was injected with a common-rail injector at high pressure (140 MPa). The results provide new information on the evolution of the two-stage ignition/premixed-burn phases of DI diesel sprays.
Technical Paper

Diffusion-Flame / Wall Interactions in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1295
Over the past decade, laser diagnostics have improved our understanding of many aspects of diesel combustion. However, interactions between the combusting fuel jet and the piston-bowl wall are not well understood. In heavy-duty diesel engines, with typical fuels, these interactions occur with the combusting vapor-phase region of the jet, which consists of a central region containing soot and other products of rich-premixed combustion, surrounded by a diffusion flame. Since previous work has shown that the OH radical is a good marker of the diffusion flame, planar laser-induced fluorescence (PLIF) imaging of OH was applied to an investigation of the diffusion flame during wall interaction. In addition, simultaneous OH PLIF and planar laser-induced incandescence (PLII) soot imaging was applied to investigate the likelihood for soot deposition on the bowl wall.
Technical Paper

Dish/Stirling Hybrid-Receiver Sub-Scale Tests and Full-Scale Design

1999-08-02
1999-01-2561
We have designed and tested a prototype dish/Stirling hybrid-receiver combustion system. The system consists of a pre-mixed natural-gas burner heating a pin-finned sodium heat pipe. The design emphasizes simplicity, low cost, and ruggedness. Our test was on a 1/6th-scale device, with a nominal firing rate of 18kWt, a power throughput of 13kWt, and a sodium vapor temperature of 750°C. The air/fuel mixture was electrically preheated to 640°C to simulate recuperation. The test rig was instrumented for temperatures, pressures, flow rates, overall leak rate, and exhaust emissions. The data verify our burner and heat-transfer models. Performance and post-test examinations validate our choice of materials and fabrication methods. Based on the 1/6th -scale results, we are designing a full-scale hybrid receiver.
Technical Paper

Effects of High-Pressure Gaseous Hydrogen on Structural Metals

2007-04-16
2007-01-0433
Unlike other gases, hydrogen can promote embrittlement of structural metals at ambient temperature. The effects of high-pressure hydrogen gas on structural metals vary significantly depending on material, environmental, and mechanical variables as well as the metric used to evaluate performance. In this short review, we provide basic guidance on selection of materials for hydrogen gas service emphasizing the need for performing tests in relevant environments and using appropriate methods. Fracture mechanics and fitness-for-service type design approaches are highly recommended for ensuring robust yet efficient high-pressure designs for hydrogen gas service.
Technical Paper

Evaluation of Aerogel Materials for High-Temperature Batteries

1999-08-02
1999-01-2479
Silica aerogels have 1/3 the thermal conductivity of the best commercial composite insulations, or ~13 mW/m-K at 25 °C. However, aerogels are transparent in the near IR region of 4-7 μm, which is where the radiation peak from a thermal-battery stack occurs. Titania and carbon-black powders were examined as thermal opacifiers, to reduce radiation at temperatures between 300°C and 600°C, which spans the range of operating temperature for most thermal batteries. The effectiveness of the various opacifiers depended on the loading, with the best overall results being obtained using aerogels filled with carbon black. Fabrication and strength issues still remain, however.
Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
Technical Paper

Improving Aircraft Composite Inspections Using Optimized Reference Standards

1998-11-09
983120
The rapidly increasing use of composites on commercial airplanes coupled with the potential for economic savings associated with their use in aircraft structures means that the demand for composite materials technology will continue to increase. Inspecting these composite structures is a critical element in assuring their continued airworthiness. The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee, is developing a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft.
Technical Paper

Interaction of Intake-Induced Flow and Injection Jet in a Direct-Injection Hydrogen-Fueled Engine Measured by PIV

2011-04-12
2011-01-0673
The in-cylinder charge motion during the compression stroke of an optically accessible engine equipped with direct injection of hydrogen fuel is measured via particle image velocimetry (PIV). The evolution of the mean flow field and the tumble ratio are examined with and without injection, each with the unmodified 4-valve pent-roof engine head and with the intake ports modified to yield higher tumble. The measurements in the vertical symmetry plane of the cylinder show that intake modification produces the desired drastic increase in tumble flow, changing the tumble ratio at BDC from 0.22 to 0.70. Either intake-induced flow is completely disrupted by the high-pressure hydrogen injection from an angled, centrally located single-hole nozzle. The injection event leads to sudden reversal of the tumble. Hence the tumble ratio is negative after injection. However, the two intake configurations still differ in tumble ratio by about the same magnitude as before injection.
X