Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Boosted Premixed-LTGC / HCCI Combustion of EHN-doped Gasoline for Engine Speeds Up to 2400 rpm

2016-10-17
2016-01-2295
Previous work has shown that conventional diesel ignition improvers, 2-ethylhexyl nitrate (EHN) and di-tert-butyl peroxide (DTBP), can be used to enhance the autoignition of a regular-grade E10 gasoline in a well premixed low-temperature gasoline combustion (LTGC) engine, hereafter termed an HCCI engine, at naturally aspirated and moderately boosted conditions (up to 180 kPa absolute) with a constant engine speed of 1200 rpm and a 14:1 compression ratio. In the current work the effect of EHN on boosted HCCI combustion is further investigated with a higher compression ratio (16:1) piston and over a range of engine speeds (up to 2400 rpm). The results show that the higher compression ratio and engine speeds can make the combustion of a regular-grade E10 gasoline somewhat less stable. The addition of EHN improves the combustion stability by allowing combustion phasing to be more advanced for the same ringing intensity.
Technical Paper

Combustion-Timing Control of Low-Temperature Gasoline Combustion (LTGC) Engines by Using Double Direct-Injections to Control Kinetic Rates

2019-04-02
2019-01-1156
Low-temperature gasoline combustion (LTGC) engines can provide high efficiencies and extremely low NOx and particulate emissions, but controlling the combustion timing remains a challenge. This paper explores the potential of Partial Fuel Stratification (PFS) to provide fast control of CA50 in an LTGC engine. Two different compression ratios are used (CR=16:1 and 14:1) that provide high efficiencies and are compatible with mixed-mode SI-LTGC engines. The fuel used is a research grade E10 gasoline (RON 92, MON 85) representative of a regular-grade market gasoline found in the United States. The fuel was supplied with a gasoline-type direct injector (GDI) mounted centrally in the cylinder. To create the PFS, the GDI injector was pulsed twice each engine cycle. First, an injection early in the intake stroke delivered the majority of the fuel (70 - 80%), establishing the minimum equivalence ratio in the charge.
Journal Article

Development and Validation of an EHN Mechanism for Fundamental and Applied Chemistry Studies

2022-03-29
2022-01-0455
Autoignition enhancing additives have been used for years to enhance the ignition quality of diesel fuel, with 2-ethylhexyl nitrate (EHN) being the most common additive. EHN also enhances the autoignition reactivity of gasoline, which has advantages for some low-temperature combustion techniques, such as Sandia’s Low-Temperature Gasoline Combustion (LTGC) with Additive-Mixing Fuel Injection (AMFI). LTGC-AMFI is a new high-efficiency and low-emissions engine combustion process based on supplying a small, variable amount of EHN into the fuel for better engine operation and control. However, the mechanism by which EHN interacts with the fuel remains unclear. In this work, a chemical-kinetic mechanism for EHN was developed and implemented in a detailed mechanism for gasoline fuels. The combined mechanism was validated against shock-tube experiments with EHN-doped n-heptane and HCCI engine data for EHN-doped regular E10 gasoline. Simulations showed a very good match with experiments.
Technical Paper

Efficiency Improvement of Boosted Low-Temperature Gasoline Combustion Engines (LTGC) Using a Double Direct-Injection Strategy

2017-03-28
2017-01-0728
For lean or dilute, boosted gasoline compression-ignition engines operating in a low-temperature combustion mode, creating a partially stratified fuel charge mixture prior to auto-ignition can be beneficial for reducing the heat-release rate (HRR) and the corresponding maximum rate of pressure rise. As a result, partial fuel stratification (PFS) can be used to increase load and/or efficiency without knock (i.e. without excessive ringing). In this work, a double direct-injection (D-DI) strategy is investigated for which the majority of the fuel is injected early in the intake stroke to create a relatively well-mixed background mixture, and the remaining fuel is injected in the latter part of the compression stroke to produce greater fuel stratification prior auto-ignition. Experiments were performed in a 1-liter single-cylinder engine modified for low-temperature gasoline combustion (LTGC) research.
Journal Article

Experimental Evaluation of a Custom Gasoline-Like Blend Designed to Simultaneously Improve ϕ-Sensitivity, RON and Octane Sensitivity

2020-04-14
2020-01-1136
ϕ-sensitivity is a fuel characteristic that has important benefits for the operation and control of low-temperature gasoline combustion (LTGC) engines. However, regular gasoline is not very ϕ-sensitive at low-pressure conditions, meaning that intake boosting (typically Pin ≥ 1.3 bar) is required to take advantage of this property. Thus, there is strong motivation to design a gasoline-like fuel that simultaneously improves ϕ-sensitivity, RON and octane sensitivity, to make an improved fuel suitable for both LTGC and modern SI engines. In a previous study [SAE 2019-01-0961], a 5-component regulation-compliant fuel blend (CB#1) was computationally designed; and simulations showed promising results when it was compared to a regular E10 gasoline (RD5-87). The current study experimentally evaluates CB#1 in the Sandia LTGC engine and compares the results with those of RD5-87. The RON and octane sensitivity were improved 1.3 and 3.6 units by CB#1, respectively.
Technical Paper

Mixture Stratification for CA50 Control of LTGC Engines with Reactivity-Enhanced and Non-Additized Gasoline

2021-04-06
2021-01-0513
Low-temperature gasoline combustion engines can provide high efficiencies with very low NOx and particulate emissions, but rapid control of the combustion timing (50% burn point, CA50) remains a challenge. Partial Fuel Stratification (PFS) was recently demonstrated [2019-01-1156] to control CA50 over a wide range at some selected operating conditions using a regular-grade E10 gasoline. PFS was produced by a double direct injection (D-DI) strategy using a gasoline-type direct injector. For this D-DI-PFS strategy, the majority of the fuel is injected early in the intake stroke, establishing the minimum equivalence ratio in the charge, while the remainder of the fuel is supplied by a second injection at a variable time (SOI2) during the compression stroke to vary the amount of stratification. Adjusting the stratification changes the combustion timing, and this can be done on a cycle-to-cycle basis by adjusting SOI2.
Technical Paper

Refining Measurement Uncertainties in HCCI/LTGC Engine Experiments

2018-04-03
2018-01-1248
This study presents estimates for measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility. A previously presented framework for quantifying those uncertainties developed uncertainty estimates based on the transducers manufacturers’ published tolerances. The present work utilizes the framework with improved uncertainty estimates in order to more accurately represent the actual uncertainties of the data acquired in the HCCI/LTGC laboratory, which ultimately results in a reduction in the uncertainty from 30 to less than 1 kPa during the intake and exhaust strokes. Details of laboratory calibration techniques and commissioning runs are used to constrain the sensitivities of the transducers relative to manufacturer supplied values.
Technical Paper

Spark Assist for CA50 Control and Improved Robustness in a Premixed LTGC Engine – Effects of Equivalence Ratio and Intake Boost

2018-04-03
2018-01-1252
Low-temperature gasoline combustion (LTGC) engines can deliver high efficiencies, with ultra-low emissions of nitrogen oxides (NOx) and particulate matter (PM). However, controlling the combustion timing and maintaining robust operation remains a challenge for LTGC engines. One promising technique to overcoming these challenges is spark assist (SA). In this work, well-controlled, fully premixed experiments are performed in a single-cylinder LTGC research engine at 1200 rpm using a cylinder head modified to accommodate a spark plug. Compression ratios (CR) of 16:1 and 14:1 were used during the experiments. Two different fuels were also tested, with properties representative of premium- and regular-grade market gasolines. SA was found to work well for both CRs and fuels. The equivalence ratio (ϕ) limits and the effect of intake-pressure boost on the ability of SA to compensate for a reduced Tin were studied. For the conditions studied, ϕ=0.42 was found to be most effective for SA.
Technical Paper

Φ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property

2019-04-02
2019-01-0961
Φ-sensitivity is a fuel characteristic that has important benefits for the operation and control of low-temperature gasoline combustion (LTGC) engines. A fuel is φ-sensitive if its autoignition reactivity varies with the fuel/air equivalence ratio (φ). Thus, multiple-injection strategies can be used to create a φ-distribution that leads to several benefits. First, the φ-distribution causes a sequential autoignition that reduces the maximum heat release rate. This allows higher loads without knock and/or advanced combustion timing for higher efficiencies. Second, combustion phasing can be controlled by adjusting the fuel-injection strategy. Finally, experiments show that intermediate-temperature heat release (ITHR) increases with φ-sensitivity, increasing the allowable combustion retard and improving stability. A detailed mechanism was applied using CHEMKIN to understand the chemistry responsible for φ-sensitivity.
X